【題目】(1)已知
,證明:
;
(2)已知
,求證:
.
【答案】(1)證明見解析;(2)證明見解析.
【解析】試題分析:(1)利用分析法,
,要證
,只要證
,只要證
,只需證明
即可,該式顯然成立,從而可得結(jié)論;(2)本題是一個全部性問題,要證的結(jié)論與條件之間的聯(lián)系不明顯,直接由條件推出結(jié)論的線索不夠清晰,于是考慮采用反證法,假設(shè)
,不全是正數(shù),這時需要逐個討論
不是正數(shù)的情形,但注意到條件的特點(任意交換
的位置不改變命題的條件),我們只要討論其中一個數(shù)〔例如
,其他兩個數(shù)〔例如
〕與這種情形類似.
試題解析:(1)證明:
,要證
,只要證
,只要證
,即證
,而
恒成立,故
成立.
(2)假設(shè)
不全是正數(shù),即其至少有一個不是正數(shù),不妨先設(shè)
,下面分
和
兩種情況討論,如果
,則
與
矛盾,
不可能,如果
,那么由
可得,
,又
,于是
,這和已知
相矛盾,因此,
也不可能,綜上所述,
,同理可證
,所以原命題成立.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓E:
+y2=1(a>1)的右焦點為F,右頂點為A,已知
,其中O為原點,e為橢圓的離心率.
(Ⅰ)求a的值;
(Ⅱ)動直線l過點N(﹣2,0),l與橢圓E交于P,Q兩點,求△OPQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=
(a>0)的導函數(shù)y=f′(x)的兩個零點為0和3.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)的極大值為
,求函數(shù)f(x)在區(qū)間[0,5]上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從參加某次知識競賽的同學中,選取60名同學將其成績(百分制,均為整數(shù))分成
,
,
,
,
,
六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題:
![]()
(1)求分數(shù)
內(nèi)的頻率,并補全這個頻率分布直方圖;
(2)從頻率分布直方圖中,估計本次考試成績的中位數(shù);
(3)若從第1組和第6組兩組學生中,隨機抽取2人,求所抽取2人成績之差的絕對值大于10的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
在
與
處都取得極值.
(1)求
的值及函數(shù)
的單調(diào)區(qū)間;
(2)若對
,不等式
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中.己知直線l的參數(shù)方程為
(t為參數(shù)),以坐標原點為極點,x軸正半軸為極軸,建立極坐標系,曲線C的極坐標方程是ρ=4.
(1)寫出直線l的普通方程與曲線C的直角坐標系方程;
(2)直線l與曲線C相交于A、B兩點,求∠AOB的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
滿足
.
(1)若
的定義域為
,且
對定義域內(nèi)所有
都成立,求
;
(2)若
的定義域為
時,求
的值域;
(3)若
的定義域為
,設(shè)函數(shù)
,當
時,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在班級活動中,4名男生和3名女生站成一排表演節(jié)目:(寫出必要的數(shù)學式,結(jié)果用數(shù)字作答)
(1)三名女生不能相鄰,有多少種不同的站法?
(2)四名男生相鄰有多少種不同的排法?
(3)女生甲不能站在左端,女生乙不能站在右端,有多少種不同的排法?
(4)甲乙丙三人按高低從左到右有多少種不同的排法?(甲乙丙三位同學身高互不相等)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2sinωxcosωx+2
sin2ωx﹣
(ω>0)的最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移
個單位長度,再向上平移1個單位長度,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在
上的最值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com