【題目】已知拋物線
,過(guò)拋物線C的焦點(diǎn)F作互相垂直的兩條直線AB,CD,與拋物線C分別相交于A,B和C,D,點(diǎn)A,C在x軸上方.
![]()
(1)若直線AB的傾斜角為
,求
的值;
(2)設(shè)
與
的面積之和為S,求S的最小值.
【答案】(1)
(2)8
【解析】
(1)先求出直線直線AB的方程為
,與拋物線方程聯(lián)立,根據(jù)韋達(dá)定理和拋物線的性質(zhì)即可求出;
(2)設(shè)直線AB的方程為
,則CD為
,分別根據(jù)韋達(dá)定理和基本不等式即可求出S的最小值.
解:(1)直線AB的方程為
,設(shè)
,
,
由
,消y可得
,
∴
,
∴
.
(2)由已知條件得直線AB的斜率存在且不為0,設(shè)直線AB的方程為
,則CD為
,
設(shè)
,
,
,
,
由
,消y可得
,
∴
,
,
∴
,
∴
,
由
,消y可得
,
∴
1,
,
∴
,
∴![]()
∴![]()
,
當(dāng)且僅當(dāng)
時(shí)等號(hào)成立,
故S的最小值為8.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某“雙一流”大學(xué)專(zhuān)業(yè)獎(jiǎng)學(xué)金是以所學(xué)專(zhuān)業(yè)各科考試成績(jī)作為評(píng)選依據(jù),分為專(zhuān)業(yè)一等獎(jiǎng)學(xué)金、專(zhuān)業(yè)二等獎(jiǎng)學(xué)金及專(zhuān)業(yè)三等獎(jiǎng)學(xué)金,且專(zhuān)業(yè)獎(jiǎng)學(xué)金每個(gè)學(xué)生一年最多只能獲得一次.圖(1)是統(tǒng)計(jì)了該校
年
名學(xué)生周課外平均學(xué)習(xí)時(shí)間頻率分布直方圖,圖(2)是這
名學(xué)生在
年周課外平均學(xué)習(xí)時(shí)間段獲得專(zhuān)業(yè)獎(jiǎng)學(xué)金的頻率柱狀圖.
![]()
(Ⅰ)求這
名學(xué)生中獲得專(zhuān)業(yè)三等獎(jiǎng)學(xué)金的人數(shù);
(Ⅱ)若周課外平均學(xué)習(xí)時(shí)間超過(guò)
小時(shí)稱(chēng)為“努力型”學(xué)生,否則稱(chēng)為“非努力型”學(xué)生,列
聯(lián)表并判斷是否有
的把握認(rèn)為該校學(xué)生獲得專(zhuān)業(yè)一、二等獎(jiǎng)學(xué)金與是否是“努力型”學(xué)生有關(guān)?
![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種出口產(chǎn)品的關(guān)稅稅率
,市場(chǎng)價(jià)格
(單位:千元)與市場(chǎng)供應(yīng)量
(單位:萬(wàn)件)之間近似滿足關(guān)系式:
,其中
、
均為常數(shù).當(dāng)關(guān)稅稅率為
時(shí),若市場(chǎng)價(jià)格為5千元,則市場(chǎng)供應(yīng)量約為1萬(wàn)件;當(dāng)關(guān)稅稅率為
時(shí),若市場(chǎng)價(jià)格為7千元,則市場(chǎng)供應(yīng)量約為2萬(wàn)件.
(1)試確定
、
的值;
(2)市場(chǎng)需求量
(單位:萬(wàn)件)與市場(chǎng)價(jià)格
近似滿足關(guān)系式:
.當(dāng)
時(shí),市場(chǎng)價(jià)格稱(chēng)為市場(chǎng)平衡價(jià)格.當(dāng)市場(chǎng)平衡價(jià)格不超過(guò)4千元時(shí),試確定關(guān)稅稅率的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,底面
是平行四邊形,
,側(cè)面
底面
,
,
,
、
分別為
,
的中點(diǎn),點(diǎn)
在線段
上.
![]()
(1)若
為
的中點(diǎn),求證:平面
平面
;
(2)求證:
平面
;
(3)若
,求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形
中,
,
,點(diǎn)
為線段
上一動(dòng)點(diǎn),現(xiàn)將
沿
折起,使點(diǎn)
在面
內(nèi)的射影
在直線
上,當(dāng)點(diǎn)
從
運(yùn)動(dòng)到
,則點(diǎn)
所形成軌跡的長(zhǎng)度為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
如圖,已知平面QBC與直線PA均垂直于
所在平面,且PA=AB=AC.
![]()
(Ⅰ)求證:PA∥平面QBC;
(Ⅱ)若
,求二面角Q-PB-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱柱
中,
,側(cè)面
底面
,
是
的中點(diǎn),
,
.
![]()
(Ⅰ)求證:
為直角三角形;
(Ⅱ)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,已知曲線C1:x2+y2=1,以平面直角坐標(biāo)系xoy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線
:ρ(2cosθ-sinθ)=6.
(Ⅰ)將曲線C1上的所有點(diǎn)的橫坐標(biāo),縱坐標(biāo)分別伸長(zhǎng)為原來(lái)的
、2倍后得到曲線C2,試寫(xiě)出直線
的直角坐標(biāo)方程和曲線C2的參數(shù)方程.
(Ⅱ)在曲線C2上求一點(diǎn)P,使點(diǎn)P到直線l的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
的部分圖象如圖所示:
![]()
(I)求
的解析式及對(duì)稱(chēng)中心坐標(biāo);
(Ⅱ)將
的圖象向右平移
個(gè)單位,再將橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,最后將圖象向上平移1個(gè)單位,得到函數(shù)
的圖象,求函數(shù)
在
上的單調(diào)區(qū)間及最值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com