【題目】已知函數
,
.
(1)函數
在點
處的切線的斜率為2,求
的值;
(2)討論函數
的單調性;
(3)若函數
有兩個不同極值點為
、
,證明:
.
科目:高中數學 來源: 題型:
【題目】隨著新高考改革的不斷深入,高中學生生涯規(guī)劃越來越受到社會的關注.一些高中已經開始嘗試開設學生生涯規(guī)劃選修課程,并取得了一定的成果.如表為某高中為了調查學生成績與選修生涯規(guī)劃課程的關系,隨機抽取50名學生的統(tǒng)計數據.
成績優(yōu)秀 | 成績不夠優(yōu)秀 | 總計 | |
選修生涯規(guī)劃課 | 15 | 10 | 25 |
不選修生涯規(guī)劃課 | 6 | 19 | 25 |
總計 | 21 | 29 | 50 |
(1)根據列聯(lián)表運用獨立性檢驗的思想方法能否有99%的把握認為“學生的成績是否優(yōu)秀與選修生涯規(guī)劃課有關”,并說明理由;
(2)現(xiàn)用分層抽樣的方法在選修生涯規(guī)劃課的成績優(yōu)秀和成績不夠優(yōu)秀的學生中隨機抽取5名學生作為代表,從5名學生代表中再任選2名學生繼續(xù)調查,求這2名學生成績至少有1人優(yōu)秀的概率.
參考附表:
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
參考公式
,其中n=a+b+c+d.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}滿足:a1=1,且當n∈N*時,an3+an2(1﹣an+1)+1=an+1.
(1)求a2,a3的值;
(2)比較an與an+1的大小,并證明你的結論.
(3)若bn=(1
)
,其中n∈N*,證明:0<b1+b2+……+bn<2.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】生男生女都一樣,女兒也是傳后人.由于某些地區(qū)仍然存在封建傳統(tǒng)思想,頭胎的男女情況可能會影響生二孩的意愿,現(xiàn)隨機抽取某地200戶家庭進行調查統(tǒng)計.這200戶家庭中,頭胎為女孩的頻率為0.5,生二孩的頻率為0.525,其中頭胎生女孩且生二孩的家庭數為60.
(1)完成下列
列聯(lián)表,并判斷能否有95%的把握認為是否生二孩與頭胎的男女情況有關;
生二孩 | 不生二孩 | 合計 | |
頭胎為女孩 | 60 | ||
頭胎為男孩 | |||
合計 | 200 |
(2)在抽取的200戶家庭的樣本中,按照分層抽樣的方法在生二孩的家庭中抽取了7戶,進一步了解情況,在抽取的7戶中再隨機抽取4戶,求抽到的頭胎是女孩的家庭戶數
的分布列及數學期望.
附:
| 0.15 | 0.05 | 0.01 | 0.001 |
| 2.072 | 3.841 | 6.635 | 10.828 |
(其中
).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
:
的右焦點為
,短軸長為2,過定點
的直線
交橢圓
于不同的兩點
、
(點
在點
,
之間).
(1)求橢圓
的方程;
(2)若
,求實數
的取值范圍;
(3)若射線
交橢圓
于點
(
為原點),求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題![]()
的展開式中,僅有第7項的二項式系數最大,則展開式中的常數項為495;命題
隨機變量
服從正態(tài)分布
,且
,則
.現(xiàn)給出四個命題:①
,②
,③
,④
,其中真命題的是( )
A.①③B.①④C.②③D.②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣sinx+ax(a>0).
(1)若a=1,求證:當x∈(1,
)時,f(x)<2x﹣1;
(2)若f(x)在(0,2π)上有且僅有1個極值點,求a的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com