2.A解析:由
知函數(shù)在
上有零點,又因為函數(shù)在(0,+
)上是減函數(shù),所以函數(shù)y=f(x) 在(0,+
)上有且只有一個零點不妨設為
,則
,又因為函數(shù)是偶函數(shù),所以
=0并且函數(shù)在(0,+
)上是減函數(shù),因此-
是(-
,0)上的唯一零點,所以函數(shù)共有兩個零點
下列敘述中,是隨機變量的有( )
①某工廠加工的零件,實際尺寸與規(guī)定尺寸之差;②標準狀態(tài)下,水沸騰的溫度;③某大橋一天經(jīng)過的車輛數(shù);④向平面上投擲一點,此點坐標.
A.②③ B.①② C.①③④ D.①③
科目:高中數(shù)學 來源: 題型:
| π |
| 6 |
| π |
| 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(08年聊城市四模理) (12分) 已知M、N兩點的坐標分別是M(1+cos2x,1),N(1,
sin2x+a)(x,
是常數(shù)),令
是坐標原點).
(1)求函數(shù)
的解析式,并求函數(shù)
在[0,π]上的單調遞增區(qū)間;
(2)當
,求a的值,并說明此時
的圖象可由函數(shù)
的圖象經(jīng)過怎樣的平移和伸縮變換而得到.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知M、N兩點的坐標分別是
是常數(shù)
,令
是坐標原點
.
(Ⅰ)求函數(shù)
的解析式,并求函數(shù)
在
上的單調遞增區(qū)間;
(Ⅱ)當
時,
的最大值為
,求a的值,并說明此時
的圖象可由函數(shù)
的圖象經(jīng)過怎樣的平移和伸縮變換而得到?
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆江西省高二下學期期中考試理科數(shù)學試卷(解析版) 題型:解答題
已知![]()
(1)求函數(shù)
在
上的最小值
(2)對一切的
恒成立,求實數(shù)a的取值范圍
(3)證明對一切
,都有
成立
【解析】第一問中利用
當
時,
在
單調遞減,在
單調遞增
,當![]()
,即
時,
,![]()
![]()
第二問中,
,則
設
,
則
,
單調遞增,
,
,
單調遞減,
,因為對一切
,
恒成立,
第三問中問題等價于證明
,
,
由(1)可知
,
的最小值為
,當且僅當x=
時取得
設
,
,則
,易得![]()
。當且僅當x=1時取得.從而對一切
,都有
成立
解:(1)
當
時,
在
單調遞減,在
單調遞增
,當![]()
,即
時,
,![]()
…………4分
(2)
,則
設
,
則
,
單調遞增,
,
,
單調遞減,
,因為對一切
,
恒成立,
…………9分
(3)問題等價于證明
,
,
由(1)可知
,
的最小值為
,當且僅當x=
時取得
設
,
,則
,易得![]()
。當且僅當x=1時取得.從而對一切
,都有
成立
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com