【題目】已知集合
,設(shè)
整除
或
整除
,令
表示集合
所含元素的個(gè)數(shù).
(1)寫出
的值;
(2)當(dāng)
時(shí),寫出
的表達(dá)式,并用數(shù)學(xué)歸納法證明.
【答案】(1)
(2)答案見解析
【解析】
(1)根據(jù)題意按
分類計(jì)數(shù):![]()
![]()
即可求得答案;
(2)由(1)知![]()
![]()
,所以當(dāng)
時(shí),
的表達(dá)式要按
除的余數(shù)進(jìn)行分類,最利用數(shù)學(xué)歸納法進(jìn)行證明,即可求得答案.
(1)![]()
整除
或
整除
,
![]()
![]()
![]()
故![]()
(2) 當(dāng)
時(shí),
,![]()
下面用數(shù)學(xué)歸納法證明:
①當(dāng)
時(shí),
,結(jié)論成立;
②假設(shè)
(
)時(shí)結(jié)論成立,那么
時(shí),
在
的基礎(chǔ)上新增加的元素在
,
,
中產(chǎn)生,分以下情形討論:
1)若
,則
,
此時(shí)有![]()
,結(jié)論成立;
2)若
,則
,此時(shí)有![]()
,結(jié)論成立;
3)若
,則
,此時(shí)有![]()
,結(jié)論成立;
4)若
,則
,此時(shí)有![]()
,結(jié)論成立;
5)若
,則
,此時(shí)有![]()
,結(jié)論成立;
6)若
,則
,此時(shí)有![]()
,結(jié)論成立.
綜上所述,結(jié)論對(duì)滿足
的自然數(shù)
均成立.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了如下莖葉圖:
![]()
(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說(shuō)明理由;
(2)求40名工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù)
,并將完成生產(chǎn)任務(wù)所需時(shí)間超過(guò)
和不超過(guò)
的工人數(shù)填入下面的列聯(lián)表:
超過(guò) | 不超過(guò) | |
第一種生產(chǎn)方式 | ||
第二種生產(chǎn)方式 |
(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?
附:
,
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某快餐連鎖店招聘外賣騎手,該快餐連鎖店提供了兩種日工資方案:方案①:規(guī)定每日底薪50元,快遞業(yè)務(wù)每完成一單提成3元;方案②:規(guī)定每日底薪100元,快遞業(yè)務(wù)的前44單沒有提成,從第45單開始,每完成一單提成5元.該快餐連鎖店記錄了每天騎手的人均業(yè)務(wù)量.現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為
,
,
,
,
,
,
七組,整理得到如圖所示的頻率分布直方圖.
![]()
(1)隨機(jī)選取一天,估計(jì)這一天該連鎖店的騎手的人均日快遞業(yè)務(wù)量不少于65單的概率;
(2)若騎手甲、乙選擇了日工資方案①,丙、丁選擇了日工資方案②.現(xiàn)從上述4名騎手中隨機(jī)選取2人,求至少有1名騎手選擇方案①的概率;
(3)若從人均日收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為新聘騎手做出日工資方案的選擇,并說(shuō)明理由.(同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)
,若存在正常數(shù)
,使得對(duì)任意的
,都有
成立,我們稱函數(shù)
為“
同比不減函數(shù)”.
(1)求證:對(duì)任意正常數(shù)
,
都不是“
同比不減函數(shù)”;
(2)若函數(shù)
是“
同比不減函數(shù)”,求
的取值范圍;
(3)是否存在正常數(shù)
,使得函數(shù)
為“
同比不減函數(shù)”,若存在,求
的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:
(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(-
,0)、F2(
,0).點(diǎn)M(1,0)與橢圓短軸的兩個(gè)端點(diǎn)的連線相互垂直.
(1)求橢圓C的方程;
(2)已知點(diǎn)N的坐標(biāo)為(3,2),點(diǎn)P的坐標(biāo)為(m,n)(m≠3).過(guò)點(diǎn)M任作直線l與橢圓C相交于A、B兩點(diǎn),設(shè)直線AN、NP、BN的斜率分別為k1、k2、k3,若k1+k3=2k2,試求m,n滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
為數(shù)列
的前
項(xiàng)和,若
(
為常數(shù))對(duì)任意
恒成立.
(1)若
,求
的值;
(2)若
,且
.
①求數(shù)列
的通項(xiàng)公式;
②若數(shù)列
滿足
,且
,求證:數(shù)列
為等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,傾斜角為
的直線
過(guò)點(diǎn)
.以原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)寫出直線
的參數(shù)方程和曲線
的直角坐標(biāo)方程;
(2)若直線
與
交于
,
兩點(diǎn),且
,求傾斜角
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的離心率為
是
上一點(diǎn).
(1)求橢圓
的方程;
(2)設(shè)
是
分別關(guān)于兩坐標(biāo)軸及坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn),平行于
的直線
交
于異于
的兩點(diǎn)
.點(diǎn)
關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為
.證明:直線
與
軸圍成的三角形是等腰三角形.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com