【題目】暑假期間,某旅行社為吸引中學(xué)生去某基地參加夏令營,推出如下收費(fèi)標(biāo)準(zhǔn):若夏令營人數(shù)不超過30,則每位同學(xué)需交費(fèi)用600元;若夏令營人數(shù)超過30,則營員每多1人,每人交費(fèi)額減少10元(即:營員31人時,每人交費(fèi)590元,營員32人時,每人交費(fèi)580元,以此類推),直到達(dá)到滿額70人為止.
(1)寫出夏令營每位同學(xué)需交費(fèi)用
(單位:元)與夏令營人數(shù)
之間的函數(shù)關(guān)系式;
(2)當(dāng)夏令營人數(shù)為多少時,旅行社可以獲得最大收入?最大收入是多少?
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
且
,e為自然對數(shù)的底數(shù).)
(1)當(dāng)
時,求函數(shù)
在
處的切線方程;
(2)若函數(shù)
只有一個零點(diǎn),求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
能表示成一個奇函數(shù)
和一個偶函數(shù)
的和.
(1)請分別求出
與
的解析式;
(2)記
,請判斷函數(shù)
的奇偶性和單調(diào)性,并分別說明理由.
(3)若存在
,使得不等式
能成立,請求出實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校“統(tǒng)計”課程的教師隨機(jī)調(diào)查了選該課的一些學(xué)生的情況,具體數(shù)據(jù)如下表,為了判斷主修統(tǒng)計專業(yè)是否與性別有關(guān),計算得到
,因?yàn)?/span>
,所以判定主修統(tǒng)計專業(yè)與性別是有關(guān)系的,那么這種判斷出錯的可能性為________.
專業(yè) 性別 | 非統(tǒng)計專業(yè) | 統(tǒng)計專業(yè) |
男 | 13 | 10 |
女 | 7 | 20 |
本題可以參考獨(dú)立性檢驗(yàn)臨界值表:
| 0.5 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,求函數(shù)
的最小值;
(2)若
對于任意
恒成立,求
的取值范圍;
(3)若
,求函數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若函數(shù)
的最大值是
,求
的值;
(2)已知
,若存在兩個不同的正數(shù)
,當(dāng)函數(shù)
的定義域?yàn)?/span>
時,
的值域?yàn)?/span>
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)若曲線
上一點(diǎn)
的極坐標(biāo)為
,且
過點(diǎn)
,求
的普通方程和
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)
,
與
的交點(diǎn)為
,求
的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com