設(shè)集合W是滿足下列兩個條件的無窮數(shù)列
的集合:①對任意
,
恒成立;②對任意
,存在與n無關(guān)的常數(shù)M,使
恒成立.![]()
(1)若
是等差數(shù)列,
是其前n項和,且
試探究數(shù)列
與集合W之間的關(guān)系;
(2)設(shè)數(shù)列
的通項公式為
,且
,求M的取值范圍.
(1)
;(2)
.
解析試題分析:(1)先根據(jù)條件,利用等差數(shù)列的性質(zhì)得到
的前n項和
,然后檢驗其是否滿足①②條件即可;(2)由數(shù)列
的通項公式經(jīng)作差可知,當
時,
,此時,數(shù)列
單調(diào)遞減,當
時,
,即
,從而得到數(shù)列
中的最大項為
,由
恒成立,從而知
的取值范圍是
.
試題解析:(1)設(shè)等差數(shù)列
的公差是
,則
解得
1分
∴
(3分)
∴
∴
,適合條件①
又
,
∴當
或
時,
取得最大值20,即
,適合條件②.
綜上,
(6分)
(2)∵
,
∴當
時,
,此時,數(shù)列
單調(diào)遞減; 9分
當
時,
,即
, 10分
因此,數(shù)列
中的最大項是
, 11分
∴
,即M的取值范圍是
. 12分
考點:1.新概念的理解;2.等差數(shù)列的性質(zhì);3.數(shù)列的單調(diào)性.
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列{an}滿足an+1=2an+n2-4n+1.
(1)若a1=3,求證:存在
(a,b,c為常數(shù)),使數(shù)列{an+f(n)}是等比數(shù)列,并求出數(shù)列{an}的通項公式;
(2)若an是一個等差數(shù)列{bn}的前n項和,求首項a1的值與數(shù)列{bn}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
,
滿足
,
,且對任意的正整數(shù)
,
和
均成等比數(shù)列.
(1)求
、
的值;
(2)證明:
和
均成等比數(shù)列;
(3)是否存在唯一正整數(shù)
,使得
恒成立?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等差數(shù)列
中,
,公差
,且它的第2項,第5項,第14項分別是等比數(shù)列
的第2項,第3項,第4項.
(Ⅰ)求數(shù)列
與
的通項公式;
(Ⅱ)設(shè)數(shù)列
對任意自然數(shù)均有
成立,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
中,
且點
在直線
上。
(1)求數(shù)列
的通項公式;
(2)若函數(shù)
求函數(shù)
的最小值;
(3)設(shè)
表示數(shù)列
的前項和.試問:是否存在關(guān)于
的整式
,使得
對于一切不小于2的自然數(shù)
恒成立?若存在,寫出
的解析式,并加以證明;若不存在,試說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列{an}中,a1=1,當
時,其前n項和滿足
.
(Ⅰ)求Sn的表達式;
(Ⅱ)設(shè)
,數(shù)列{bn}的前n項和為
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列
的各項都是正數(shù),且對任意
,都有
,其中
為數(shù)列
的前
項和。
(1)求證數(shù)列
是等差數(shù)列;
(2)若數(shù)列
的前
項和為Tn,求Tn。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com