【題目】如圖,在矩形
中,
,
為邊
的中點(diǎn),以
為折痕把
折起,使點(diǎn)
到達(dá)點(diǎn)
的位置,且使平面
平面
.
![]()
(1)證明:
平面
;
(2)求點(diǎn)
到平面
的距離.
【答案】(1)證明見解析;(2)
.
【解析】
(1)根據(jù)已知條件,得到
,即
,由平面
平面
,得到
平面
,從而得到
,結(jié)合
得到
平面
;(2)過(guò)點(diǎn)
在平面
中向
引垂線,垂足
,連接
和
,得到
和
的長(zhǎng),由平面
平面
,得到
,從而得到
,
的長(zhǎng),設(shè)
為
的中點(diǎn),在等腰三角形
中,求出
的長(zhǎng),利用
,求出點(diǎn)
到平面
的距離.
(1)因?yàn)樵诰匦?/span>
中,
,
為邊
的中點(diǎn),
所以
,又
,所以![]()
所以
,
又平面
平面
,且平面
平面
,
平面![]()
所以
平面
,
而
平面
,
故
,
又
,且
,
平面
,
所以
平面
.
(2)過(guò)點(diǎn)
在平面
中向
引垂線,垂足
,連接
和
,
由
得
為
的中點(diǎn),
所以
,
,
由平面
平面
,
,
面
,平面
平面![]()
所以
平面
,
而
平面
,
所以
,
,
故
,
設(shè)
為
的中點(diǎn),連接
,在等腰三角形
中,
,
設(shè)點(diǎn)
到平面
的距離為
,
由
,得
,
即![]()
,
解得
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)
a2x(k∈R,a>0,e為自然對(duì)數(shù)的底數(shù)),且曲線f(x)在點(diǎn)(1,f(1))處的切線的斜率為e2﹣a2.
(1)求實(shí)數(shù)k的值,并討論函數(shù)f(x)的單調(diào)性;
(2)設(shè)函數(shù)g(x)
,若對(duì)x1∈(0,+∞),x2∈R,使不等式f(x2)≤g(x1)﹣1成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C的中心在坐標(biāo)原點(diǎn)焦點(diǎn)在x軸上,橢圓C上一點(diǎn)A(2
,﹣1)到兩焦點(diǎn)距離之和為8.若點(diǎn)B是橢圓C的上頂點(diǎn),點(diǎn)P,Q是橢圓C上異于點(diǎn)B的任意兩點(diǎn).
(1)求橢圓C的方程;
(2)若BP⊥BQ,且滿足3
2
的點(diǎn)D在y軸上,求直線BP的方程;
(3)若直線BP與BQ的斜率乘積為常數(shù)λ(λ<0),試判斷直線PQ是否經(jīng)過(guò)定點(diǎn).若經(jīng)過(guò)定點(diǎn),請(qǐng)求出定點(diǎn)坐標(biāo);若不經(jīng)過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若函數(shù)
在
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
(2)當(dāng)
時(shí),若方程
有兩個(gè)不等實(shí)數(shù)根
,
,求實(shí)數(shù)
的取值范圍,并證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究不同性別在處理多任務(wù)時(shí)的表現(xiàn)差異,召集了男女志愿者各200名,要求他們同時(shí)完成多個(gè)任務(wù),包括解題、讀地圖、接電話.下圖表示了志愿者完成任務(wù)所需的時(shí)間分布.以下結(jié)論,對(duì)志愿者完成任務(wù)所需的時(shí)間分布圖表理解正確的是( )
![]()
①總體看女性處理多任務(wù)平均用時(shí)更短;
②所有女性處理多任務(wù)的能力都要優(yōu)于男性;
③男性的時(shí)間分布更接近正態(tài)分布;
④女性處理多任務(wù)的用時(shí)為正數(shù),男性處理多任務(wù)的用時(shí)為負(fù)數(shù).
A.①④B.②③C.①③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的左頂點(diǎn)
與上頂點(diǎn)
的距離為
.
(Ⅰ)求橢圓
的方程和焦點(diǎn)的坐標(biāo);
(Ⅱ)點(diǎn)
在橢圓
上,線段
的垂直平分線與
軸相交于點(diǎn)
,若
為等邊三角形,求點(diǎn)
的橫坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣一中學(xué)的同學(xué)為了解本縣成年人的交通安全意識(shí)情況,利用假期進(jìn)行了一次全縣成年人安全知識(shí)抽樣調(diào)查.已知該縣成年人中
的擁有駕駛證,先根據(jù)是否擁有駕駛證,用分層抽樣的方法抽取了100名成年人,然后對(duì)這100人進(jìn)行問(wèn)卷調(diào)查,所得分?jǐn)?shù)的頻率分布直方圖如下圖所示.規(guī)定分?jǐn)?shù)在80以上(含80)的為“安全意識(shí)優(yōu)秀”.
擁有駕駛證 | 沒(méi)有駕駛證 | 合計(jì) | |
得分優(yōu)秀 | |||
得分不優(yōu)秀 | 25 | ||
合計(jì) | 100 |
![]()
(1)補(bǔ)全上面
的列聯(lián)表,并判斷能否有超過(guò)
的把握認(rèn)為“安全意識(shí)優(yōu)秀與是否擁有駕駛證”有關(guān)?
(2)若規(guī)定參加調(diào)查的100人中分?jǐn)?shù)在70以上(含70)的為“安全意識(shí)優(yōu)良”,從參加調(diào)查的100人中根據(jù)安全意識(shí)是否優(yōu)良,按分層抽樣的方法抽出5人,再?gòu)?人中隨機(jī)抽取3人,試求抽取的3人中恰有一人為“安全意識(shí)優(yōu)良”的概率.
附表及公式:
,其中
.
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次數(shù)學(xué)考試中,抽查了1000名學(xué)生的成績(jī),得到頻率分布直方圖如圖所示,規(guī)定85分及其以上為優(yōu)秀.
![]()
(1)下表是這次抽查成績(jī)的頻數(shù)分布表,試求正整數(shù)
、
的值;
區(qū)間 | [75,80) | [80,85) | [85,90) | [90,95) | [95,100] |
人數(shù) | 50 | a | 350 | 300 | b |
(2)現(xiàn)在要用分層抽樣的方法從這1000人中抽取40人的成績(jī)進(jìn)行分析,求抽取成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù);
(3)在根據(jù)(2)抽取的40名學(xué)生中,要隨機(jī)選取2名學(xué)生參加座談會(huì),記其中成績(jī)?yōu)閮?yōu)秀的人數(shù)為X,求X的分布列與數(shù)學(xué)期望(即均值).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)歷法推測(cè)遵循以測(cè)為輔、以算為主的原則.例如《周髀算經(jīng)》和《易經(jīng)》里對(duì)二十四節(jié)氣的晷(guǐ)影長(zhǎng)的記錄中,冬至和夏至的晷影長(zhǎng)是實(shí)測(cè)得到的,其它節(jié)氣的晷影長(zhǎng)則使按照等差數(shù)列的規(guī)律計(jì)算得出的,下表為《周髀算經(jīng)》對(duì)二十四節(jié)氣晷影長(zhǎng)的記錄,其中
寸表示115寸
分(1寸
分),已知《易經(jīng)》中記錄的冬至晷影長(zhǎng)為130.0寸,夏至晷影長(zhǎng)為14.8寸,那么《易經(jīng)》中所記錄的驚蟄的晷影長(zhǎng)應(yīng)為( )
節(jié)氣 | 冬至 | 小寒(大雪) | 大寒(小雪) | 立春(立冬) | 雨水(霜降) | 驚蟄(寒露) |
晷影(寸) | 135 |
|
|
|
|
|
節(jié)氣 | 春分(秋分) | 清明(白露) | 谷雨(處暑) | 立夏(立秋) | 小滿(大暑) | 芒種(小暑)> | 夏至 |
晷影(寸) | 75.5 |
|
|
|
|
| 16.0 |
A.72.4寸B.81.4寸C.82.0寸D.91.6寸
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com