分析 (1)求出函數(shù)的解析式,然后求解函數(shù)的最大值,通過|m-1|≤1,求解m的范圍,得到m的最大值M.
(2)利用分析法,證明不等式成立的充分條件即可.
解答 解:(1)由已知可得f(x)=$\left\{\begin{array}{l}{-1,x<0}\\{2x-1,0≤x≤1}\\{1,x>1}\end{array}\right.$,
所以fmax(x)=1,…(3分)
所以只需|m-1|≤1,解得-1≤m-1≤1,∴0≤m≤2,
所以實數(shù)m的最大值M=2…(5分)
(2)因為a>0,b>0,
所以要證a+b≥2ab,只需證(a+b)2≥4a2b2,
即證a2+b2+2ab≥4a2b2,
所以只要證2+2ab≥4a2b2,…(7分)
即證2(ab)2-ab-1≤0,
即證(2ab+1)(ab-1)≤0,因為2ab+1>0,所以只需證ab≤1,
下證ab≤1,
因為2=a2+b2≥2ab,所以ab≤1成立,
所以a+b≥2ab…(10分)
點評 本題考查函數(shù)的最值的求法,基本不等式的應(yīng)用,考查分析法的應(yīng)用,考查邏輯推理能力以及計算能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | y=-|x-1| | B. | y=x2-2x+3 | C. | y=ln(x+1) | D. | y=2${\;}^{-\frac{x}{2}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0.3 | B. | 0.4 | C. | 0.5 | D. | 0.6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{{3\sqrt{3}}}{2}$ | B. | $\frac{{9\sqrt{3}}}{4}$ | C. | $3\sqrt{3}$ | D. | $\frac{{9\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com