【題目】已知函數(shù)f1(x)=﹣ax2,f2(x)=x3+x2,f(x)=f1(x)+f2(x),設(shè)f(x)的導(dǎo)函數(shù)為f′(x),若不等式f1(x)<f′(x)<f2(x)在區(qū)間(1,+∞)上恒成立,則a的取值范圍為_____.
【答案】
【解析】
在區(qū)間
上恒成立,即
恒成立,
可化為
,由一次函數(shù)的性質(zhì)可求
的范圍;
可化為
,由二次函數(shù)的性質(zhì)求出函數(shù)的最值,可得
的范圍,綜合兩種情況可得結(jié)果.
f(x)=﹣ax2+x3+x2=x3+(1﹣a)x2,f′(x)=3x2+2(1﹣a)x,
f1(x)<f′(x)<f2(x)在區(qū)間(1,+∞)上恒成立,
即﹣ax2<3x2+2(1﹣a)x<x3+x2恒成立,
﹣ax2<3x2+2(1﹣a)x,可化為(a+3)x+2(1﹣a)>0,
,解得﹣3≤a≤5①;
3x2+2(1﹣a)x<x3+x2可化為2a>﹣x2+2x+2,
而﹣x2+2x+2=﹣(x﹣1)2+3<3,
∴2a≥3,即
②,
由①②可得
,
∴實(shí)數(shù)a的取值范圍是
,故答案為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知從甲地到乙地的公路里程約為240(單位:km).某汽車每小時(shí)耗油量Q(單位:L)與速度x(單位:
)(
)的關(guān)系近似符合以下兩種函數(shù)模型中的一種(假定速度大小恒定):①
,②
,經(jīng)多次檢驗(yàn)得到以下一組數(shù)據(jù):
x | 0 | 40 | 60 | 120 |
Q | 0 |
|
| 20 |
(1)你認(rèn)為哪一個(gè)是符合實(shí)際的函數(shù)模型,請說明理由;
(2)從甲地到乙地,這輛車應(yīng)以多少速度行駛才能使總耗油量最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若實(shí)數(shù)
滿足
,則稱
為
的不動(dòng)點(diǎn).已知函數(shù)
,其中,
、
為常數(shù)。
(1)若
,求函數(shù)
的單調(diào)遞增區(qū)間;
(2)若
時(shí),存在一個(gè)實(shí)數(shù)
,使得
既是
的不動(dòng)點(diǎn),又是
的極值點(diǎn),求實(shí)數(shù)
的值;
(3)證明:不存在實(shí)數(shù)組
,使得
互異的兩個(gè)極值點(diǎn)均為不動(dòng)點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年國慶黃金周旅游市場依舊火爆.一旅行社為某旅行團(tuán)包機(jī)旅游,其中旅行社的包機(jī)費(fèi)15000元,旅行團(tuán)中每人的飛機(jī)票按以下方式與旅行社結(jié)算:若旅行團(tuán)人數(shù)不超過35人,飛機(jī)票每張800元;若旅行團(tuán)人數(shù)多于35人,則給予如下優(yōu)惠:每多1人,每張機(jī)票減少10元,但旅行團(tuán)的人數(shù)最多不超過60人,記旅行團(tuán)人數(shù)為
,每個(gè)人的機(jī)票錢為y元.
(1)寫出
與
的關(guān)系式.
(2)求旅行社獲得的利潤
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某書店剛剛上市了《中國古代數(shù)學(xué)史》,銷售前該書店擬定了5種單價(jià)進(jìn)行試銷,每本單價(jià)(
元)試銷l天,得到如表單價(jià)
(元)與銷量
(冊)數(shù)據(jù):
單價(jià) |
|
|
|
|
|
銷量 |
|
|
|
|
|
(1)已知銷量
與單價(jià)
具有線性相關(guān)關(guān)系,求
關(guān)于的線性回歸方程;
(2)若該書每本的成本為
元,要使得售賣時(shí)利潤最大,請利用所求的線性相關(guān)關(guān)系確定單價(jià)應(yīng)該定為多少元?(結(jié)果保留到整數(shù))
附:對于一組數(shù)據(jù)
,
,…,
,其回歸直線
的斜率和截距的最小二乘估計(jì)分別為:![]()
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域?yàn)?/span>R.若存在與x無關(guān)的正常數(shù)M,使|f(x)|≤ M|x|對一切實(shí)數(shù)x均成立,則稱f(x)為有界泛函.則函數(shù):① f(x)=-3x,② f(x)=x2,③ f(x)=sin2x,④ f(x)=2x,⑤ f(x)=xcosx中,屬于有界泛函的有____________.(填上所有正確的番號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在2012年的自主招生考試成績中隨機(jī)抽取
名中學(xué)生的筆試成績,按成績分組,得到的頻率分布表如表所示.
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第1組 |
| 5 |
|
第2組 |
| ① |
|
第3組 |
| 30 | ② |
第4組 |
| 20 |
|
第5組 |
| 10 |
|
![]()
(1)請先求出頻率分布表中
位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第
組中用分層抽樣抽取名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試;
(3)在(2)的前提下,學(xué)校決定在
名學(xué)生中隨機(jī)抽取
名學(xué)生接受
考官進(jìn)行面試,求:第
組至少有一名學(xué)生被考官
面試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市準(zhǔn)備在道路
的一側(cè)修建一條運(yùn)動(dòng)比賽道,賽道的前一部分為曲線段
,該曲線段是函數(shù)
,
時(shí)的圖象,且圖象的最高點(diǎn)為
.賽道的中間部分為長
千米的直線跑道
,且
.賽道的后一部分是以
為圓心的一段圓弧
.
![]()
(1)求
的值和
的大小;
(2)若要在圓弧賽道所對應(yīng)的扇形
區(qū)域內(nèi)建一個(gè)“矩形草坪”,矩形的一邊在道路
上,一個(gè)頂點(diǎn)在半徑
上,另外一個(gè)頂點(diǎn)
在圓弧
上,且
,求當(dāng)“矩形草坪”的面積取最大值時(shí)
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com