【題目】已知函數(shù)f(x)
x+1,x∈R.
(1)求函數(shù)f(x)的最小正周期并寫出函數(shù)f(x)圖象的對(duì)稱軸方程和對(duì)稱中心;
(2)求函數(shù)f(x)在區(qū)間
上的最大值和最小值.
【答案】(1)π,x
,(
,1);(2)最大值
,最小值1
.
【解析】
(1)利用二倍角公式、輔助角公式化簡(jiǎn)
解析式,由此求得
的最小正周期、對(duì)稱軸和對(duì)稱中心.
(2)根據(jù)三角函數(shù)最值的求法,求得
在區(qū)間
上的最大值和最小值.
(1)f(x)
x+1,
,
sin(2x
)+1,
故函數(shù)f(x)的最小正周期T=π,
令2x
k
,可得x
,
令2x
kπ可得x
,k∈Z,
即函數(shù)f(x)圖象的對(duì)稱軸方程x
,k∈Z,對(duì)稱中心(
,1),k∈Z.
(2)∵x∈
,
∴
2x![]()
∴﹣1
,
根據(jù)正弦函數(shù)的性質(zhì)可知,最大值
,最小值1
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中央政府為了對(duì)應(yīng)因人口老齡化而造成的勞動(dòng)力短缺等問題,擬定出臺(tái)“延遲退休年齡政策”,為了了解人們對(duì)“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研,人社部從網(wǎng)上年齡在15~65的人群中隨機(jī)調(diào)查50人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:
![]()
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表,并問是否有90%的把握認(rèn)為以45歲為分界點(diǎn)對(duì)“延遲退休年齡政策”的支持度有差異:
![]()
(2)若從年齡在
的被調(diào)查人中隨機(jī)選取兩人進(jìn)行調(diào)查,求選中的2人中恰有1人支持“延遲退休”的概率.
參考數(shù)據(jù):
![]()
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
(
)的左焦點(diǎn)為
,其中四個(gè)頂點(diǎn)圍成的四邊形面積為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)
的直線
與曲線
交于
,
兩點(diǎn),設(shè)
的中點(diǎn)為
,
,
兩點(diǎn)為橢圓
上關(guān)于原點(diǎn)
對(duì)稱的兩點(diǎn),且
(
),求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】全國(guó)文明城市,簡(jiǎn)稱文明城市,是指在全面建設(shè)小康社會(huì)中市民整體素質(zhì)和城市文明程度較高的城市.全國(guó)文明城市稱號(hào)是反映中國(guó)大陸城市整體文明水平的最高榮譽(yù)稱號(hào).為普及相關(guān)知識(shí),爭(zhēng)創(chuàng)全國(guó)文明城市,某市組織了文明城市知識(shí)競(jìng)賽,現(xiàn)隨機(jī)抽取了甲、乙兩個(gè)單位各5名職工的成績(jī)(單位:分)如下表:
![]()
(1)根據(jù)上表中的數(shù)據(jù),分別求出甲、乙兩個(gè)單位5名職工的成績(jī)的平均數(shù)和方差,并比較哪個(gè)單位的職工對(duì)文明城市知識(shí)掌握得更好;
(2)用簡(jiǎn)單隨機(jī)抽樣法從乙單位5名職工中抽取2人,求抽取的2名職工的成績(jī)差的絕對(duì)值不小于4的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,過點(diǎn)
作
軸的垂線
交函數(shù)
圖象于點(diǎn)
,以
為切點(diǎn)作函數(shù)
圖象的切線交
軸于點(diǎn)
,再過
作
軸的垂線
交函數(shù)
圖象于點(diǎn)
,
,以此類推得點(diǎn)
,記
的橫坐標(biāo)為
,
.
(1)證明數(shù)列
為等比數(shù)列并求出通項(xiàng)公式;
(2)設(shè)直線
與函數(shù)
的圖象相交于點(diǎn)
,記
(其中
為坐標(biāo)原點(diǎn)),求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù),
).
(1)若曲線
與直線
的一個(gè)交點(diǎn)縱坐標(biāo)為
,求
的值;
(2)若曲線
上的點(diǎn)到直線
的最大距離為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩品種的棉花中各抽測(cè)了25根棉花的纖維長(zhǎng)度(單位:mm),得到如圖5的莖葉圖,整數(shù)位為莖,小數(shù)位為葉,如27.1mm的莖為27,葉為1.
![]()
(1)試比較甲、乙兩種棉花的纖維長(zhǎng)度的平均值的大小及方差的大小;(只需寫出估計(jì)的結(jié)論,不需說明理由)
(2)將棉花按纖維長(zhǎng)度的長(zhǎng)短分成七個(gè)等級(jí),分級(jí)標(biāo)準(zhǔn)如表:
![]()
試分別估計(jì)甲、乙兩種棉花纖維長(zhǎng)度等級(jí)為二級(jí)的概率;
(3)為進(jìn)一步檢驗(yàn)甲種棉花的其它質(zhì)量指標(biāo),現(xiàn)從甲種棉花中隨機(jī)抽取4根,記
為抽取的棉花纖維長(zhǎng)度為二級(jí)的根數(shù),求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示1,已知四邊形ABCD滿足
,
,E是BC的中點(diǎn).將
沿著AE翻折成
,使平面
平面AECD,F為CD的中點(diǎn),如圖所示2.
![]()
(1)求證:
平面
;
(2)求AE到平面
的距離.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com