欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

3.已知sin(5π-θ)+sin($\frac{5π}{2}$-θ)=$\frac{\sqrt{7}}{2}$.求:
(1)sin3($\frac{π}{2}$+θ)-cos3($\frac{3π}{2}$-θ);
(2)sin4($\frac{π}{2}$-θ)+cos4($\frac{7π}{2}$+θ).

分析 根據(jù)三角函數(shù)的誘導(dǎo)公式先化簡(jiǎn)條件,根據(jù)同角的三角函數(shù)關(guān)系式進(jìn)行轉(zhuǎn)化求解即可.

解答 解:∵sin(5π-θ)+sin($\frac{5π}{2}$-θ)=$\frac{\sqrt{7}}{2}$.
∴sinθ+cosθ=$\frac{\sqrt{7}}{2}$.則sin2θ+2sinθcosθ+cos2θ=$\frac{7}{4}$,
即2sinθcosθ=$\frac{3}{4}$,則sinθcosθ=$\frac{3}{8}$,
(1)sin3($\frac{π}{2}$+θ)-cos3($\frac{3π}{2}$-θ)=cos3θ+sin3θ=(sinθ+cosθ)(sin2θ-sinθcosθ+cos2θ)=$\frac{\sqrt{7}}{2}$×(1-$\frac{3}{8}$)=$\frac{\sqrt{7}}{2}$×$\frac{5}{8}$=$\frac{5\sqrt{7}}{16}$;
(2)sin4($\frac{π}{2}$-θ)+cos4($\frac{7π}{2}$+θ)=cos4θ+sin4θ=(sin2θ+cos2θ)2-2sin2θcos2θ=1-2(sinθcosθ)2=1-2×$\frac{9}{64}$=$\frac{23}{32}$.

點(diǎn)評(píng) 本題主要考查三角函數(shù)值的化簡(jiǎn)和求解,利用三角函數(shù)的誘導(dǎo)公式以及同角的三角函數(shù)的關(guān)系式是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.給出如下四個(gè)命題:
①命題p:?x0∈R,x${\;}_{0}^{2}$+x0-1<0,則非p:?x∉R,x2+x-1≥0;
②命題“若x≥2且y≥3,則x+y≥5”的否命題為“若x<2且y<3,則x+y<5”;
③四個(gè)實(shí)數(shù)a,b,c,d依次成等比數(shù)列的必要而不充分條件是ad=bc;
④在△ABC中,“A>45°”是“sinA>$\frac{\sqrt{2}}{2}$”的充分不必要條件
其中正確的命題的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)y=(log2a)x是減函數(shù),則a的取值范圍是a∈(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,且Sn=2n(n+1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足:an=$\frac{_{1}}{3+1}+\frac{_{2}}{{3}^{2}+1}+\frac{_{3}}{{3}^{3}+1}$+…+$\frac{_{n}}{{3}^{n}+1}$,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.化簡(jiǎn):$\frac{sin(3π-α)tan(α+π)cot(-α-π)}{cos(π-α)tan(3π-α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知數(shù)列{an}是以a為首項(xiàng),a為公比的等比數(shù)列(a>0,a≠1),令bn=an1gan,若{bn}中的每一項(xiàng)總小于它后面的一項(xiàng),則a的取值范圍是( 。
A.(0,$\frac{1}{2}$)B.(1,+∞)C.(0,$\frac{1}{2}$)∪(1,+∞)D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知$\overrightarrow{AB}$=(2,-1),$\overrightarrow{CB}$=(-2,3),則|$\overrightarrow{AC}$|=4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,F(xiàn)是橢圓P:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn),已知A(0,-2)與橢圓左頂點(diǎn)關(guān)于直線y=x對(duì)稱,且直線AF的斜率為$\frac{2\sqrt{3}}{3}$,
(1)求橢圓P的方程;
(2)過(guò)點(diǎn)Q(-1,0)的直線l交橢圓P于M、N兩點(diǎn),交直線x=-4于點(diǎn)E,$\overrightarrow{MQ}$=$λ\overrightarrow{QN}$,$\overrightarrow{ME}$=$μ\overrightarrow{EN}$,證明:λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的長(zhǎng)軸長(zhǎng)為$2\sqrt{2}$,離心率$e=\frac{{\sqrt{2}}}{2}$,過(guò)右焦點(diǎn)F的直線l交橢圓于P,Q兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)直線l的斜率為1時(shí),求△POQ的面積;
(Ⅲ)若以O(shè)P,OQ為鄰邊的平行四邊形是矩形,求滿足該條件的直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案