【題目】已知單調(diào)等比數(shù)列
中,首項為
,其前n項和是
,且
成等差數(shù)列,數(shù)列
滿足條件![]()
(Ⅰ) 求數(shù)列
、
的通項公式;
(Ⅱ) 設(shè)
,記數(shù)列
的前
項和
.
①求
;②求正整數(shù)
,使得對任意
,均有
.
【答案】(Ⅰ)
;
;
(Ⅱ)①見解析;②見解析.
【解析】
(Ⅰ)由題意首先求得數(shù)列的公比,據(jù)此即可確定數(shù)列
的通項公式,進(jìn)一步利用遞推關(guān)系可得數(shù)列
的通項公式;
(Ⅱ)①.結(jié)合(Ⅰ)中求得的通項公式分組求和即可確定
的值;
②.利用作差法結(jié)合指數(shù)函數(shù)和一次函數(shù)增長速度的關(guān)系可得k的值.
(Ⅰ)設(shè)
. 由已知得
即 ![]()
進(jìn)而有
. 所以
,即
,則
,
由已知數(shù)列
是單調(diào)等比數(shù)列,且
所以取
,
數(shù)列
的通項公式為
.
∵
, ∴
則
.
數(shù)列
的通項公式為
.
(Ⅱ)由(Ⅰ)得
①設(shè)
,
的前
項和為
.則
.
又設(shè)
,
的前
項和為
.
則
.
所以
![]()
②令
.
由于
比
變化快,所以令
得
.
即
遞增,而
遞減.所以,
最大.
即當(dāng)
時,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計了一個實驗,并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)
與燒開一壺水所用時間
的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
表中
,
.
![]()
(1)根據(jù)散點圖判斷,
與
哪一個更適宜作燒水時間
關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)
的回歸方程類型?(不必說明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立
關(guān)于
的回歸方程;
(3)若單位時間內(nèi)煤氣輸出量
與旋轉(zhuǎn)的弧度數(shù)
成正比,那么,利用第(2)問求得的回歸方程知
為多少時,燒開一壺水最省煤氣?
附:對于一組數(shù)據(jù)
,其回歸直線
的斜率和截距的最小二乘法估計值分別為
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為a的正方體ABCD-A1B1C1D1中,E是棱DD1的中點:
![]()
(1)求點D到平面A1BE的距離;
(2)在棱
上是否存在一點F,使得B1F∥平面A1BE,若存在,指明點F的位置;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌餐飲公司準(zhǔn)備在10個規(guī)模相當(dāng)?shù)牡貐^(qū)開設(shè)加盟店,為合理安排各地區(qū)加盟店的個數(shù),先在其中5個地區(qū)試點,得到試點地區(qū)加盟店個數(shù)分別為1,2,3,4,5時,單店日平均營業(yè)額
(萬元)的數(shù)據(jù)如下:
加盟店個數(shù) | 1 | 2 | 3 | 4 | 5 |
單店日平均營業(yè)額 | 10.9 | 10.2 | 9 | 7.8 | 7.1 |
(1)求單店日平均營業(yè)額
(萬元)與所在地區(qū)加盟店個數(shù)
(個)的線性回歸方程;
(2)根據(jù)試點調(diào)研結(jié)果,為保證規(guī)模和效益,在其他5個地區(qū),該公司要求同一地區(qū)所有加盟店的日平均營業(yè)額預(yù)計值總和不低于35萬元,求一個地區(qū)開設(shè)加盟店個數(shù)
的所有可能取值;
(3)小趙與小王都準(zhǔn)備加入該公司的加盟店,根據(jù)公司規(guī)定,他們只能分別從其他五個地區(qū)(加盟店都不少于2個)中隨機選一個地區(qū)加入,求他們選取的地區(qū)相同的概率.
(參考數(shù)據(jù)及公式:
,
,線性回歸方程
,其中
,
.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(注意:在試題卷上作答無效)
已知數(shù)列
中,
.
(Ⅰ)設(shè)
,求數(shù)列
的通項公式;
(Ⅱ)求使不等式
成立的
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,函數(shù)
.
(1)當(dāng)
時,若
對任意
恒成立,求
的取值范圍;
(2)若函數(shù)
有兩個不同的零點
和
,求
的取值范圍,并證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=aex圖象在x=0處的切線與函數(shù)g(x)=lnx圖象在x=1處的切線互相平行.
(Ⅰ)求a的值;
(Ⅱ)設(shè)直線x=t(t>0)分別與曲線y=f(x)和y=g(x)交于P,Q兩點,求證:|PQ|>2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(請寫出式子在寫計算結(jié)果)有4個不同的小球,4個不同的盒子,現(xiàn)在要把球全部放入盒內(nèi):
(1)共有多少種方法?
(2)若每個盒子不空,共有多少種不同的方法?
(3)恰有一個盒子不放球,共有多少種放法?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com