| A. | f(x)=$\sqrt{{x}^{2}}$,g(x)=|x| | B. | f(x)=x0,g(x)=1 | ||
| C. | f(x)=$\frac{{x}^{2}-1}{x+1}$,g(x)=x-1 | D. | f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$,g(x)=$\sqrt{{x}^{2}-1}$ |
分析 根據(jù)兩個(gè)函數(shù)的定義域相同,對(duì)應(yīng)關(guān)系也相同,即可得出結(jié)論.
解答 解:對(duì)于A,函數(shù)f(x)=$\sqrt{{x}^{2}}$=|x|(x∈R),與g(x)=|x|(x∈R)的定義域相同,對(duì)應(yīng)關(guān)系相同,所以是相同函數(shù);
對(duì)于B,函數(shù)f(x)=x0=1(x≠0),與g(x)=1|(x∈R)的定義域不同,所以不是相同函數(shù);
對(duì)于C,函數(shù)f(x)=$\frac{{x}^{2}-1}{x+1}$=x-1(x≠-1),與g(x)=x-1(x∈R)的定義域不同,所以不是相同函數(shù);
對(duì)于D,函數(shù)f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$=$\sqrt{{x}^{2}-1}$(x≥1),與g(x)=$\sqrt{{x}^{2}-1}$(x≤-1或x≥1)的定義域不同,所以不是相同函數(shù).
故選:A.
點(diǎn)評(píng) 本題考查了判斷兩個(gè)函數(shù)是否為相同函數(shù)的應(yīng)用問題,是基礎(chǔ)題目.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | a∥c | B. | a,c是異面直線 | ||
| C. | a,c相交 | D. | a,c的位置關(guān)系不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | [-2,+∞) | B. | [-2,2] | C. | (-∞,-2] | D. | [-$\frac{5}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 若$\overrightarrow a$•$\overrightarrow b$=0,則$\overrightarrow a$=$\overrightarrow 0$或$\overrightarrow b$=$\overrightarrow 0$ | B. | 若$\overrightarrow a$∥$\overrightarrow b$,則${\overrightarrow a^2}$•${\overrightarrow b^2}$=($\overrightarrow a$•$\overrightarrow b$)2 | ||
| C. | 若$\overrightarrow a•$$\overrightarrow c$=$\overrightarrow b$•$\overrightarrow c$,則$\overrightarrow a$=$\overrightarrow b$ | D. | 若$\overrightarrow a$∥$\overrightarrow b$,則存在實(shí)數(shù)k,使$\overrightarrow b$=k$\overrightarrow a$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com