【題目】設(shè)
,
,…,
為取自某總體的樣本,其算術(shù)平均值稱(chēng)為樣本均值,一般用
表示,即
,在分組樣本場(chǎng)合,樣本均值的近似公式為
,其中k為組數(shù),
為第i組的組中值,
為第i組的頻數(shù).某單位收集到20名青年的某天娛樂(lè)支出費(fèi)用數(shù)據(jù):
79 84 84 88 92 93 94 97 98 99
100 101 101 102 102 108 110 113 118 125
若將分為五組,第一組為
,根據(jù)分組樣本計(jì)算樣本均值為( )
A.99.4B.143.16C.100D.11.96
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合
,若對(duì)于任意
,存在
,使得
成立,則稱(chēng)集合
是“
集合”.給出下列5個(gè)集合:
①
;②
;③
;
④
;⑤
.
其中是“
集合”的所有序號(hào)是( )
A.②③B.①④⑤C.②③⑤D.①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)
,若存在區(qū)間
,使得
,則稱(chēng)函數(shù)
為“可等域函數(shù)”,區(qū)間
為函數(shù)
的一個(gè)“可等域區(qū)間”.給出下列4個(gè)函數(shù):
①
;②
; ③
; ④
.
其中存在唯一“可等域區(qū)間”的“可等域函數(shù)”為( )
(A)①②③ (B)②③ (C)①③ (D)②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,滿(mǎn)足
.設(shè)
為
上任一點(diǎn),過(guò)
作
的切線,其斜率
滿(mǎn)足![]()
(1)求函數(shù)
的解析式;
(2)若數(shù)列
滿(mǎn)足
.設(shè)
為正常數(shù).
①求
;
②若不等式
對(duì)任意的
恒成立,則實(shí)數(shù)
是否存在最大值?若存在,請(qǐng)求出這個(gè)值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系,將曲線
上的每一個(gè)點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來(lái)的
,得到曲線
,以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系,
的極坐標(biāo)方程為
.
(Ⅰ)求曲線
的參數(shù)方程;
(Ⅱ)過(guò)原點(diǎn)
且關(guān)于
軸對(duì)稱(chēng)的兩條直線
與
分別交曲線
于
、
和
、
,且點(diǎn)
在第一象限,當(dāng)四邊形
的周長(zhǎng)最大時(shí),求直線
的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:
(
)經(jīng)過(guò)點(diǎn)
,離心率為
,
,
分別為橢圓的左、右焦點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)
(
)在橢圓C上,求證;直線
與直線
關(guān)于直線l:
對(duì)稱(chēng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿(mǎn)足bcosA﹣
asinB=0.
(1)求A;
(2)已知a=2
,B=
,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,且曲線
的左焦點(diǎn)
在直線
上.
(Ⅰ)求
的極坐標(biāo)方程和曲線
的參數(shù)方程;
(Ⅱ)求曲線
的內(nèi)接矩形的周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中AD∥BC,DA⊥AB,AD=2,AB=BC=1,CD
,點(diǎn)E為PD中點(diǎn).
![]()
(1)求證:CE∥平面PAB;
(2)若PA=2,PD=2
,∠PAB
,求平面PBD與平面ECD所成銳二面角的余弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com