【題目】已知函數(shù)f(x)=log2(1+x)﹣log2(1﹣x),g(x)=log2(1+x)+log2(1﹣x).
(1)判斷函數(shù)f(x)奇偶性并證明;
(2)判斷函數(shù)f(x)單調(diào)性并用單調(diào)性定義證明;
(3)求函數(shù)g(x)的值域.
【答案】
(1)解:由
得
,即﹣1<x<1,即函數(shù)的定義域為(﹣1,1),關(guān)于原點對稱
f(﹣x)=﹣f(x)∴f(x)為(﹣1,1)上的奇函數(shù)
(2)解:設(shè)﹣1<x1<x2<1,
則
=
,
又﹣1<x1<x2<1∴(1+x1)(1﹣x2)﹣(1﹣x1)(1+x2)=2(x1﹣x2)<0
即0<(1+x1)(1﹣x2)<(1﹣x1)(1+x2),
∴
,
∴
,
∴f(x1)<f(x2),
∴f(x)在(﹣1,1)上單調(diào)遞增
(3)解:由
得
,即﹣1<x<1,即函數(shù)的定義域為(﹣1,1),
則g(x)=log2(1+x)+log2(1﹣x)=g(x)=log2[(1+x)(1﹣x)]=log2(1﹣x2)≤log21=0,
即g(x)的值域為(﹣∞,0]
【解析】(1)根據(jù)函數(shù)奇偶性的定義即可判斷函數(shù)f(x)奇偶性并證明;(2)根據(jù)函數(shù)單調(diào)性的定義即可判斷函數(shù)f(x)單調(diào)性并用單調(diào)性定義證明;(3)根據(jù)函數(shù)奇偶性和單調(diào)性的關(guān)系即可求函數(shù)g(x)的值域.
【考點精析】本題主要考查了奇偶性與單調(diào)性的綜合的相關(guān)知識點,需要掌握奇函數(shù)在關(guān)于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點對稱的區(qū)間上有相反的單調(diào)性才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線
在直角坐標系
中的參數(shù)方程為
為參數(shù),
為傾斜角),以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,在極坐標系中,曲線的方程為
.
(1)寫出曲線
的直角坐標方程;
(2)點
,若直線
與曲線
交于
兩點,求使
為定值的
值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線
的焦點
也是橢圓
的一個焦點,
與
的公共弦的長為
.
(1)求
的方程;
(2)過點
的直線
與
相交于
,
兩點,與
相交于
,
兩點,且
與
同向
(ⅰ)若
,求直線
的斜率
(ⅱ)設(shè)
在點
處的切線與
軸的交點為
,證明:直線
繞點
旋轉(zhuǎn)時,
總是鈍角三角形
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓心為C的圓經(jīng)過點A(0,2)和B(1,1),且圓心C在直線l:x+y+5=0上.
(1)求圓C的標準方程;
(2)若P(x,y)是圓C上的動點,求3x﹣4y的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,a=2,A=45°,若此三角形有兩解,則b的取值范圍是( )
A.(2,2
)
B.(2,+∞)
C.(﹣∞,2)
D.(
,
)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的中心在原點,焦點在
軸上,離心率
.以兩個焦點和短軸的兩個端點為頂點的四邊形的周長為8,面積為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若點
為橢圓
上一點,直線
的方程為
,求證:直線
與橢圓
有且只有一個交點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的一塊木料中,棱BC平行于面A′C′.
(Ⅰ)要經(jīng)過面A′C′內(nèi)的一點P和棱BC將木料鋸開,應(yīng)怎樣畫線?
(Ⅱ)所畫的線與平面AC是什么位置關(guān)系?并證明你的結(jié)論.![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了讓學生了解環(huán)保知識,增強環(huán)保意識,某中學舉行了一次“環(huán)保知識競賽”,共有800名學生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學生的成績進行統(tǒng)計. 請你根據(jù)尚未完成并有局部污損的頻率分布表和頻率分布直方圖,解答下列問題:
分組 | 頻數(shù) | 頻率 |
50.5~60.5 | 6 | 0.08 |
60.5~70.5 | 0.16 | |
70.5~80.5 | 15 | |
80.5~90.5 | 24 | 0.32 |
90.5~100.5 | ||
合計 | 75 | 1.00 |
![]()
(1)填充頻率分布表的空格;
(2)補全頻率分布直方圖;
(3)根據(jù)頻率分布直方圖求此次“環(huán)保知識競賽”的平均分為多少?
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com