欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

6.如圖,已知|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=2$\sqrt{3}$,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0點C在線段AB上,∠AOC=30°,用$\overrightarrow{OA}$和$\overrightarrow{OB}$來表示向量$\overrightarrow{OC}$,則$\overrightarrow{OC}$等于$\frac{3}{4}\overrightarrow{OA}$+$\frac{1}{4}\overrightarrow{OB}$.

分析 利用三角形知識求出AC,AB,用$\overrightarrow{OA},\overrightarrow{OB}$表示出$\overrightarrow{AC}$,于是$\overrightarrow{OC}=\overrightarrow{OA}+\overrightarrow{AC}$.

解答 解:∵$\overrightarrow{OA}•\overrightarrow{OB}=0$,∴OA⊥OB.
∵OA=2,OB=2$\sqrt{3}$,
∴|AB|=$\sqrt{O{A}^{2}+O{B}^{2}}$=4,∠A=60°,∠B=30°.
∵∠AOC=30°,
∴OC⊥AB,
∴AC=$\frac{1}{2}OA=1$,
∴$\overrightarrow{AC}=\frac{1}{4}\overrightarrow{AB}$=$\frac{1}{4}$$\overrightarrow{OB}$-$\frac{1}{4}$$\overrightarrow{OA}$,
∴$\overrightarrow{OC}=\overrightarrow{OA}+\overrightarrow{AC}$=$\frac{3}{4}\overrightarrow{OA}$+$\frac{1}{4}\overrightarrow{OB}$.
故答案為:$\frac{3}{4}\overrightarrow{OA}$+$\frac{1}{4}\overrightarrow{OB}$.

點評 本題考查了平面向量的線性運算的幾何意義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線l:y=x+b,圓C:x2+y2+2ax-2ay+2a2-4a=0(a>0).
(1)當b=4時,求直線l被圓C所截得的弦長的最大值;
(2)當b=1時,是否存在a,使得l與圓C交于A、B兩點,且滿足$\overrightarrow{OA}•\overrightarrow{OB}$=1?若存在,求出a值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,若$\overrightarrow{a}$=$\overrightarrow{OD}$,$\overrightarrow$=$\overrightarrow{OE}$,$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,|$\overrightarrow{a}$|=|$\overrightarrow$|=1,點P是以點O為圓心的圓弧$\widehat{DE}$上一動點,設(shè)$\overrightarrow{OP}$=x$\overrightarrow{OD}$+y$\overrightarrow{OE}$(x,y∈R),求x+y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知如圖平行四邊形ABCD中,點E是CD的中點,$\overrightarrow{BE}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{CD}$,$\overrightarrow{BD}$(寫出解題過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.動點P在橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1,Q點在圓C:x2+(y-5)2=1上移動,試求PQ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知集合A={(x,y)|x+y=1},集合B={(x,y)|x-2y=4},求A∩B,說明其幾何意義,并在平面直角坐標系中表示出來.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)點P為圓C1:x2+y2=2上的動點,過點P作x軸的垂線,垂足為Q,點M滿足$\sqrt{2}$$\overrightarrow{MQ}$=$\overrightarrow{PQ}$.
(1)求點M的軌跡C2的方程;
(2)過直線x=2上的點T作圓C1的兩條切線,設(shè)切點分別為A、B,若直線AB與(1)中的曲線C2交與C、D兩點,求$\frac{{|{CD}|}}{{|{AB}|}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.定點M(1,1),動A、B點在圓C:x2+y2=4上運動且MB垂直MA,則弦AB長度最小值為$\sqrt{6}$-$\sqrt{2}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)圓O:x2+y2=$\frac{16}{9}$,直線l:x+3y-8=0,點A∈l,圓O上存在點B且∠OAB=30°(O為坐標原點),則點A的縱坐標的取值范圍[$\frac{32}{15},\frac{8}{3}$].

查看答案和解析>>

同步練習(xí)冊答案