【題目】高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號,用其名字命名的“高斯函數(shù)”為:設(shè)
,用
表示不超過
的最大整數(shù),則
稱為高斯函數(shù),例如:
,
.已知函數(shù)
,函數(shù)
,則下列命題中真命題的個數(shù)是( )
①
圖象關(guān)于
對稱;
②
是奇函數(shù);
③
在
上是增函數(shù);
④
的值域是
.
A.
B.
C.
D.![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,斜率為
的直線交拋物線
于
兩點,已知點
的橫坐標(biāo)比點
的橫坐標(biāo)大4,直線
交線段
于點
,交拋物線于點
.
![]()
(1)若點
的橫坐標(biāo)等于0,求
的值;
(2)求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點
為極點,
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
(1)求圓
的圓心到直線
的距離;
(2)已知
,若直線
與圓
交于
兩點,
為
的中點,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓
的左、右頂點分別為A、B,右焦點為F,且點F滿足
,由橢圓C的四個頂點圍成的四邊形面積為
.過點
的直線TA,TB與此橢圓分別交于點
,
,其中
,
,
.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)T在直線
時,直線MN是否過x軸上的一定點?若是,求出該定點的坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年末,武漢出現(xiàn)新型冠狀病毒(
肺炎疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,目前沒有特異治療方法.防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,某社區(qū)將本社區(qū)的排查工作人員分為
,
兩個小組,排查工作期間社區(qū)隨機(jī)抽取了100戶已排查戶,進(jìn)行了對排查工作態(tài)度是否滿意的電話調(diào)查,根據(jù)調(diào)查結(jié)果統(tǒng)計后,得到如下
的列聯(lián)表.
是否滿意 組別 | 不滿意 | 滿意 | 合計 |
| 16 | 34 | 50 |
| 2 | 45 | 50 |
合計 | 21 | 79 | 100 |
(1)分別估計社區(qū)居民對
組、
組兩個排查組的工作態(tài)度滿意的概率;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),能否有
的把握認(rèn)為“對社區(qū)排查工作態(tài)度滿意”與“排查工作組別”有關(guān)?
附表:
|
|
|
|
|
|
|
|
|
|
|
|
附:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點
作圓
的切線
,已知
,
分別為切點,直線
恰好經(jīng)過橢圓的右焦點和下頂點,則直線
方程為___________;橢圓的標(biāo)準(zhǔn)方程是__________.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com