| A. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z | B. | [kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z | ||
| C. | [2kπ-$\frac{π}{3}$,2kπ+$\frac{π}{6}$],k∈Z | D. | [2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{3}$],k∈Z |
分析 利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的單調(diào)性,得出結(jié)論.
解答 解:∵函數(shù)f(x)=2$\sqrt{3}$sinxcosx-2sin2x=$\sqrt{3}$sin2x-2•$\frac{1-cos2x}{2}$=2sin(2x+$\frac{π}{6}$)-1,x∈R,
令 2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,
可得函數(shù)f(x)的單調(diào)遞增區(qū)間為[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z,
故選:A.
點(diǎn)評(píng) 本題主要考查三角恒等變換,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 36 | B. | 48 | C. | 72 | D. | 112 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 函數(shù)f(x)的最小周期為$\frac{2π}{3}$ | |
| B. | 圖象f(x)的圖象可由g(x)=Acos(ωx)的圖象向右平移$\frac{π}{12}$個(gè)單位得到 | |
| C. | 函數(shù)f(x)的圖象關(guān)于直線x=$\frac{π}{12}$對(duì)稱 | |
| D. | 函數(shù)f(x)在區(qū)間($\frac{π}{4}$,$\frac{π}{2}$)上單調(diào)遞增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{4}{3}$ | B. | $\frac{3}{4}$ | C. | $-\frac{4}{3}$ | D. | $-\frac{3}{4}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com