【題目】已知函數(shù)
在
與
時都取得極值.
(1)求
的值與函數(shù)
的單調(diào)區(qū)間;
(2)若對
,不等式
恒成立,求
的取值范圍.
【答案】解:(1)
……………………2分
由
,
……………………3分
得
……………………5分
(2)
,
當(dāng)
時,
為極大值,……………………6分
而
,則
為最大值,……………………8分
要使![]()
恒成立,則只需要
,……………………10分
得
……………………12分
【解析】
(1)求出f
(x),由題意得f
(
)=0且f
(1)=0聯(lián)立解得
與b的值,然后把
、b的值代入求得f(x)及f
(x),討論導(dǎo)函數(shù)的正負(fù)得到函數(shù)的增減區(qū)間;
(2)根據(jù)(1)函數(shù)的單調(diào)性,由于x∈[﹣1,2]恒成立求出函數(shù)的最大值為f(2),代入求出最大值,然后令f(2)<c2列出不等式,求出c的范圍即可.
(1)
,f
(x)=3x2+2ax+b
由
解得,![]()
f
(x)=3x2﹣x﹣2=(3x+2)(x﹣1),函數(shù)f(x)的單調(diào)區(qū)間如下表:
x | (﹣∞, |
| ( | 1 | (1,+∞) |
f | + | 0 | ﹣ | 0 | + |
f(x) |
| 極大值 |
| 極小值 |
|
所以函數(shù)f(x)的遞增區(qū)間是(﹣∞,
)和(1,+∞),遞減區(qū)間是(
,1).
(2)因?yàn)?/span>
,根據(jù)(1)函數(shù)f(x)的單調(diào)性,
得f(x)在(﹣1,
)上遞增,在(
,1)上遞減,在(1,2)上遞增,
所以當(dāng)x
時,f(x)![]()
為極大值,而f(2)=
,所以f(2)=2+c為最大值.
要使f(x)<
對x∈[﹣1,2]恒成立,須且只需
>f(2)=2+c.
解得c<﹣1或c>2.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司將進(jìn)貨單價為8元一個的商品按10元一個出售,每天可以賣出100個,若這種商品的售價每個上漲1元,則銷售量就減少10個.
(1)求售價為13元時每天的銷售利潤;
(2)求售價定為多少元時,每天的銷售利潤最大,并求最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合Z={(x,y)|x∈[0,2],y∈[-1,1]}.
(1)若x,y∈Z,求x+y≥0的概率;
(2)若x,y∈R,求x+y≥0的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體
中,底面
是邊長為2的菱形,
,四邊形
是矩形,
和
分別是
和
的中點(diǎn).
![]()
(1)求證:平面
平面
;
(2)若平面
平面
,
,求平面
與平面
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時,直線
與
相切,求
的值;
(2)若函數(shù)
在
內(nèi)有且只有一個零點(diǎn),求此時函數(shù)
的單調(diào)區(qū)間;
(3)當(dāng)
時,若函數(shù)
在
上的最大值和最小值的和為1,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省確定從2021年開始,高考采用“
”的模式,取消文理分科,即“3”包括語文、數(shù)學(xué)、外語,為必考科目;“1”表示從物理、歷史中任選一門;“2”則是從生物、化學(xué)、地理、政治中選擇兩門,共計(jì)六門考試科目.某高中從高一年級2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取
名學(xué)生進(jìn)行調(diào)查.
(1)已知抽取的
名學(xué)生中含男生110人,求
的值及抽取到的女生人數(shù);
(2)學(xué)校計(jì)劃在高二上學(xué)期開設(shè)選修中的“物理”和“歷史”兩個科目,為了了解學(xué)生對這兩個科目的選課情況,對在(1)的條件下抽取到的n名學(xué)生進(jìn)行問卷調(diào)查(假定每名學(xué)生在這兩個科目中必須選擇一個科目且只能選擇一個科目).下表是根據(jù)調(diào)查結(jié)果得到的
列聯(lián)表,請將列聯(lián)表補(bǔ)充完整,并判斷是否有99.5%的把握認(rèn)為選擇科目與性別有關(guān)?
說明你的理由;
![]()
(3)在(2)的條件下,從抽取的選擇“物理”的學(xué)生中按分層抽樣抽取6人,再從這6名學(xué)生中抽取2人,對“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.
附:
,其中
.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
是奇函數(shù).
(1)求
的值并判斷
的單調(diào)性;
(2)當(dāng)
時,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com