【題目】從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得
=80,
=20,
=184,
=720.
(1)求家庭的月儲蓄y對月收入x的線性回歸方程y=bx+a;
(2)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
(3)若該居民區(qū)某家庭月收入為7千元,預(yù)測該家庭的月儲蓄.
附:線性回歸方程y=bx+a中,
,a=
-b
,其中
,
為樣本平均值.
【答案】(1) y=0.3x-0.4(2)正相關(guān)(3) 1.7(千元).
【解析】試題分析:(1)先根據(jù)所給數(shù)據(jù)算出樣本中心點的坐標(biāo),再根據(jù)所給數(shù)據(jù)算出公式
所需要的有關(guān)量,從而可得到
的值,將樣本中心點的坐標(biāo)代入回歸方程即可得到
的值,進而可求得回歸方程;(2)由所求回歸方程的斜率的正負(fù),可判斷兩變量間是正相關(guān)還是負(fù)相關(guān);(3)
代入所求回歸方程可預(yù)測該家庭的月儲蓄.
(1)由題意知n=10,
=
=
=8,
=
=
=2.
又lxx=
-n
2=720-10×82=80,
lxy=
yi=n
=184-10×8×2=24.
由此得b=
=0.3,a=
-b
=2-0.3×8=-0.4,
故所求回歸方程為y=0.3x-0.4.
(2)由于變量y的值隨x的值增加而增加(b=0.3>0),故x與y之間是正相關(guān).
(3)將x=7代入回歸方程可以預(yù)測該家庭的月儲蓄為
y=0.3×7-0.4=1.7(千元).
【方法點晴】本題主要考查線性回歸方程及其應(yīng)用,屬于難題.求回歸直線方程的步驟:①依據(jù)樣本數(shù)據(jù)畫出散點圖,確定兩個變量具有線性相關(guān)關(guān)系;②計算
的值;③計算回歸系數(shù)
;④寫出回歸直線方程為
; 回歸直線過樣本點中心
是一條重要性質(zhì),利用線性回歸方程可以估計總體,幫助我們分析兩個變量的變化趨勢.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線
上的點到點
的距離比它到直線
的距離小2.
(1)求曲線
的方程;
(2)過點
且斜率為
的直線
交曲線
于
,
兩點,若
,當(dāng)
時,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點
,橢圓
的長軸長是短軸長的2倍,
是橢圓
的右焦點,直線
的斜率為
,
為坐標(biāo)原點.
(1)求橢圓
的方程;
(2)設(shè)過點
的動直線
與橢圓
相交于
兩點.當(dāng)
的面積最大時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓C與y軸相切于點T(0,2),與x軸的正半軸交于兩點
(點
在點
的左側(cè)),且
.
(1)求圓C的方程;(2)過點
任作一直線與圓O:
相交于
兩點,連接
,求證:
定值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量
,
.
(1)若
分別表示將一枚質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6),先后拋擲兩次時第一次、第二次出現(xiàn)的點數(shù),求滿足
的概率;
(2)若
在連續(xù)區(qū)間
上取值,求滿足
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的定義域為[﹣1,1],圖象如圖1所示;函數(shù)g(x)的定義域為[﹣2,2],圖象如圖2所示,設(shè)函數(shù)f(g(x))有m個零點,函數(shù)g(f(x))有n個零點,則m+n等于( )
![]()
A. 6 B. 10 C. 8 D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京大學(xué)從參加逐夢計劃自主招生考試的學(xué)生中隨機抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六組
,
,…,
后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:
(1)求分?jǐn)?shù)在
內(nèi)的頻率;
(2)估計本次考試成績的中位數(shù)(結(jié)果四舍五入,保留整數(shù));
(3)用分層抽樣的方法在分?jǐn)?shù)段為
的學(xué)生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有
人在分?jǐn)?shù)段
內(nèi)的概率.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
為實數(shù),函數(shù)
.
(1)若
,求
的取值范圍;
(2)討論
的單調(diào)性;
(3)當(dāng)
時,討論
在區(qū)間
內(nèi)的零點個數(shù).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com