【題目】已知橢圓
的離心率
,過焦點(diǎn)且垂直于x軸的直線被橢圓截得的線段長為3
(1)求橢圓的方程;
(2)已知P為直角坐標(biāo)平面內(nèi)一定點(diǎn),動直線l:
與橢圓交于A、B兩點(diǎn),當(dāng)直線PA與直線PB的斜率均存在時,若直線PA與PB的斜率之和為與t無關(guān)的常數(shù),求出所有滿足條件的定點(diǎn)P的坐標(biāo).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:x2=4y的焦點(diǎn)為F,過點(diǎn)P(-2,2)的直線l與拋物線C交于A,B兩點(diǎn).
(1)當(dāng)點(diǎn)P為A、B的中點(diǎn)時,求直線AB的方程;
(2)求|AF||BF|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
1左右焦點(diǎn)為F1,F2直線(
1)x
y
0與該橢圓有一個公共點(diǎn)在y軸上,另一個公共點(diǎn)的坐標(biāo)為(m,1).
(1)求橢圓C的方程;
(2)設(shè)P為橢圓C上任一點(diǎn),過焦點(diǎn)F1,F2的弦分別為PM,PN,設(shè)
λ1
λ2
,求λ1+λ2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(卷號)2040818101747712
(題號)2050752239689728
(題文)
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知直線
的參數(shù)方程為
(
為參數(shù)),曲線C的極坐標(biāo)方程為
.
(1)求曲線
的直角坐標(biāo)方程和直線
的普通方程;
(2)設(shè)直線
與曲線
交于
兩點(diǎn),點(diǎn)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角梯形ABCD中,AB∥CD,∠BAD=90°,AB=AD=1,CD=2,若將△BCD沿著BD折起至△BC'D,使得AD⊥BC'.
![]()
(1)求證:平面C'BD⊥平面ABD;
(2)求C'D與平面ABC'所成角的正弦值;
(3)M為BD中點(diǎn),求二面角M﹣AC'﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(Ⅰ)當(dāng)
時,
取得極值,求
的值;
(Ⅱ)當(dāng)函數(shù)
有兩個極值點(diǎn)
,且
時,總有
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
=2cos(ωx
)(ω>0)滿足:f(
)=f(
),且在區(qū)間(
,
)內(nèi)有最大值但沒有最小值,給出下列四個命題:P1:
在[0,2π]上單調(diào)遞減;P2:
的最小正周期是4π;P3:
的圖象關(guān)于直線x
對稱;P4:
的圖象關(guān)于點(diǎn)(
,0)對稱.其中的真命題是( )
A.P1,P2B.P2,P4C.P1,P3D.P3,P4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校組織高一、高二年級學(xué)生進(jìn)行了“紀(jì)念建國70周年”的知識競賽.從這兩個年級各隨機(jī)抽取了40名學(xué)生,對其成績進(jìn)行分析,得到了高一年級成績的頻率分布直方圖和高二年級成績的頻數(shù)分布表.
![]()
![]()
(Ⅰ)若成績不低于80分為“達(dá)標(biāo)”,估計高一年級知識競賽的達(dá)標(biāo)率;
(Ⅱ)在抽取的學(xué)生中,從成績?yōu)閇95,100]的學(xué)生中隨機(jī)選取2名學(xué)生,代表學(xué)校外出參加比賽,求這2名學(xué)生來自于同一年級的概率;
(Ⅲ)記高一、高二兩個年級知識競賽的平均分分別為
,試估計
的大小關(guān)系.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an+1﹣an}是首項(xiàng)為
,公比為
的等比數(shù)列,a1=1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{(3n﹣1)an}的前n項(xiàng)和Sn.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com