分析 由已知得EF與GH平行且不相等,從而E、F、G、H四點共面,且EH∩FG=O,由此利用公理二能證明直線EH,F(xiàn)G和BD共點.
解答 證明:∵在空間四邊形ABCD中,E、F分別是AB、BC的中點,![]()
G、H分別是CD、DA上的點,且DH=$\frac{1}{3}$AD,DG=$\frac{1}{3}$DC,
∴GH∥AC,且GH=$\frac{1}{3}$AC,
EF∥AC,且EF=$\frac{1}{2}AC$,
∴EF與GH平行且不相等,
∴E、F、G、H四點共面,∴EH∩FG=O,如圖,
∵E,H∈平面ABD,F(xiàn),G∈平面BDC,平面ABD∩平面BDC=BD,
∴O∈BD,∴直線EH,F(xiàn)G和BD共點.
點評 本題考查三線共點的證明,是基礎(chǔ)題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2n-1 | B. | 2n+1 | C. | 3n+1 | D. | 4n+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3f(2)<2f(3) | B. | 3f(3)>4f(4) | C. | 3f(4)<4f(3) | D. | f(2)<2f(1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com