已知![]()
(1)求函數(shù)
的最小值;
(2)對一切
恒成立,求實數(shù)
的取值范圍;
(3)證明:對一切
,都有
成立.
(1)
;(2)
(3)見解析
解析試題分析:(1)先求定義域,再利用導(dǎo)數(shù)與單調(diào)性的關(guān)系求單調(diào)區(qū)間;(2)通過導(dǎo)數(shù)解決不等式恒成立的問題;(3)先轉(zhuǎn)化不等式,在給定的區(qū)間內(nèi)比較大小.
(1)由已知知函數(shù)
的定義域為
,
, 1分
當(dāng)
單調(diào)遞減, 2分
當(dāng)
單調(diào)遞增. 3分
. 4分
(2)
,則
, 5分
設(shè)
,則
, 6分
①
單調(diào)遞減;
②
單調(diào)遞增;![]()
,對一切
恒成立,![]()
. 8分
(3)原不等式等價于
, 9分
由(1)可知
的最小值是
,當(dāng)且僅當(dāng)
時取到最小值. 10分
設(shè)
,則
,
易知
,當(dāng)且僅當(dāng)
時取到最小值.[來源:學(xué)&科&
從而對一切
,都有
成立. 12分
考點:利用導(dǎo)數(shù)求單調(diào)區(qū)間;函數(shù)單調(diào)性;不等式恒成立。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如果n件產(chǎn)品中任取一件樣品是次品的概率為
,則認(rèn)為這批產(chǎn)品中有
件次品。某企業(yè)的統(tǒng)計資料顯示,產(chǎn)品中發(fā)生次品的概率p與日產(chǎn)量n滿足![]()
,有已知每生產(chǎn)一件正品可贏利a元,如果生產(chǎn)一件次品,非但不能贏利,還將損失
元(
).
(1)求該企業(yè)日贏利額
的最大值;
(2)為保證每天的贏利額不少于日贏利額最大值的50%,試求該企業(yè)日產(chǎn)量的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)的圖象與函數(shù)h(x)=x+
+2的圖象關(guān)于點A(0,1)對稱.
(1)求函數(shù)f(x)的解析式;
(2)若g(x)=f(x)+
,g(x)在區(qū)間(0,2]上的值不小于6,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
常數(shù)
)滿足
.
(1)求出
的值,并就常數(shù)
的不同取值討論函數(shù)
奇偶性;
(2)若
在區(qū)間
上單調(diào)遞減,求
的最小值;
(3)在(2)的條件下,當(dāng)
取最小值時,證明:
恰有一個零點
且存在遞增的正整數(shù)數(shù)列
,使得
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2011•湖北)(1)已知函數(shù)f(x)=lnx﹣x+1,x∈(0,+∞),求函數(shù)f(x)的最大值;
(2)設(shè)a1,b1(k=1,2…,n)均為正數(shù),證明:
①若a1b1+a2b2+…anbn≤b1+b2+…bn,則![]()
…
≤1;
②若b1+b2+…bn=1,則
≤![]()
…
≤b12+b22+…+bn2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)關(guān)于x函數(shù)
其中0![]()
將f(x)的最小值m表示成a的函數(shù)m=g(a);
是否存在實數(shù)a,使f(x)>0在
上恒成立?
是否存在實數(shù)a,使函數(shù)f(x) 在
上單調(diào)遞增?若存在,寫出所有的a組成的集合;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某公司承建扇環(huán)面形狀的花壇如圖所示,該扇環(huán)面花壇是由以點
為圓心的兩個同心圓弧
、弧
以及兩條線段
和
圍成的封閉圖形.花壇設(shè)計周長為30米,其中大圓弧
所在圓的半徑為10米.設(shè)小圓弧
所在圓的半徑為
米(
),圓心角為
弧度.![]()
(1)求
關(guān)于
的函數(shù)關(guān)系式;
(2)在對花壇的邊緣進(jìn)行裝飾時,已知兩條線段的裝飾費(fèi)用為4元/米,兩條弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為
,當(dāng)
為何值時,
取得最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
甲廠以x千克/小時的速度運(yùn)輸生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時可獲得利潤是100(5x+1-
)元.
(1)要使生產(chǎn)該產(chǎn)品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求最大利潤.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com