【題目】已知函數(shù)f(x)=mx2-mx-1.
(1)若對(duì)于x∈R,f(x)<0恒成立,求實(shí)數(shù)m的取值范圍;
(2)若對(duì)于x∈[1,3],f(x)<5-m恒成立,求實(shí)數(shù)m的取值范圍.
【答案】(1)(-4,0].(2)
【解析】試題分析:(1)先根據(jù)二次項(xiàng)系數(shù)是否為零分類討論,再結(jié)合二次函數(shù)圖像確定不等式恒成立的條件,最后求解實(shí)數(shù)m的取值范圍;(2)分類變量將不等式轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值問題:
的最小值,再根據(jù)二次函數(shù)求最值,即得實(shí)數(shù)m的取值范圍.
試題解析:解:(1)由題意可得m=0或
m=0或-4<m<0-4<m≤0.
故m的取值范圍是(-4,0].
(2)要使f(x)<-m+5在[1,3]上恒成立,即m
2+
m-6<0在x∈[1,3]上恒成立.
令g(x)=m
2+
m-6,x∈[1,3].
當(dāng)m>0時(shí),g(x)在[1,3]上是增函數(shù),
所以g(x)max=g(3)7m-6<0,
所以m<
,則0<m<
;
當(dāng)m=0時(shí),-6<0恒成立;
當(dāng)m<0時(shí),g(x)在[1,3]上是減函數(shù),
所以g(x)max=g(1)m-6<0,
所以m<6,所以m<0.
綜上所述:m的取值范圍是
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高三年級(jí)共有1000名學(xué)生,其中男生650人,女生350人,為了調(diào)查學(xué)生周末的休閑方式,用分層抽樣的方法抽查了200名學(xué)生.
(Ⅰ)完成下面的
列聯(lián)表;
不喜歡運(yùn)動(dòng) | 喜歡運(yùn)動(dòng) | 合計(jì) | |
女生 | 50 | ||
男生 | |||
合計(jì) | 100 | 200 |
![]()
(Ⅱ)在抽取的樣本中,調(diào)查喜歡運(yùn)動(dòng)女生的運(yùn)動(dòng)時(shí)間,發(fā)現(xiàn)她們的運(yùn)動(dòng)時(shí)間介于30分鐘到90分鐘之間,右圖是測(cè)量結(jié)果的頻率分布直方圖,若從區(qū)間段
和
的所有女生中隨機(jī)抽取兩名女生,求她們的運(yùn)動(dòng)時(shí)間在同一區(qū)間段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
為拋物線
的焦點(diǎn),點(diǎn)
為點(diǎn)
關(guān)于原點(diǎn)的對(duì)稱點(diǎn),點(diǎn)
在拋物線
上,則下列說法錯(cuò)誤的是( )
A. 使得
為等腰三角形的點(diǎn)
有且僅有4個(gè)
B. 使得
為直角三角形的點(diǎn)
有且僅有4個(gè)
C. 使得
的點(diǎn)
有且僅有4個(gè)
D. 使得
的點(diǎn)
有且僅有4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于
的不等式
(其中
).
(1)當(dāng)
時(shí),求不等式的解集;
(2)若不等式在
內(nèi)有解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某購物網(wǎng)站對(duì)在7座城市的線下體驗(yàn)店的廣告費(fèi)指出
(萬元)和銷售額
(萬元)的數(shù)據(jù)統(tǒng)計(jì)如下表:
城市 |
|
|
|
|
|
|
|
廣告費(fèi)支出 |
|
|
|
|
|
|
|
銷售額 |
|
|
|
|
|
|
|
(Ⅰ)若用線性回歸模型擬合
與
關(guān)系,求
關(guān)于
的線性回歸方程;
(Ⅱ)若用對(duì)數(shù)函數(shù)回歸模型擬合
與
的關(guān)系,可得回歸方程
,經(jīng)計(jì)算對(duì)數(shù)函數(shù)回歸模型的相關(guān)系數(shù)約為
,請(qǐng)說明選擇哪個(gè)回歸模型更合適,并用此模型預(yù)測(cè)
城市的廣告費(fèi)用支出
萬元時(shí)的銷售額.
參考數(shù)據(jù):
,
,
,
,
,
.
參考公式:
,
.
相關(guān)系數(shù)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2018屆高三·湖南十校聯(lián)考)已知函數(shù)f(x)=x+sin x(x∈R),且f(y2-2y+3)+f(x2-4x+1)≤0,則當(dāng)y≥1時(shí),
的取值范圍是( )
A.
B. ![]()
C. [1,3
-3] D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018河南安陽市高三一模】如下圖,在平面直角坐標(biāo)系
中,直線
與直線
之間的陰影部分即為
,區(qū)域
中動(dòng)點(diǎn)
到
的距離之積為1.
![]()
(Ⅰ)求點(diǎn)
的軌跡
的方程;
(Ⅱ)動(dòng)直線
穿過區(qū)域
,分別交直線
于
兩點(diǎn),若直線
與軌跡
有且只有一個(gè)公共點(diǎn),求證:
的面積恒為定值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com