欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

19.若(1+i)+(2-3i)=a+bi(a,b∈R,i是虛數(shù)單位),則a,b的值分別等于( 。
A.3,-2B.3,2C.3,-3D.-1,4

分析 由復數(shù)的加法運算化簡等式左邊,然后由實部等于實部,虛部等于虛部求得a,b的值.

解答 解:由(1+i)+(2-3i)=3-2i=a+bi,
得a=3,b=-2.
故選:A.

點評 本題考查復數(shù)的加法運算及復數(shù)相等的條件,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.為推動乒乓球運動的發(fā)展,某乒乓球比賽允許不同協(xié)會的運動員組隊參加,現(xiàn)有來自甲協(xié)會的運動員3名,其中種子選手2名,乙協(xié)會的運動員5名,其中種子選手3名,從這8名運動員中隨機選擇4人參加比賽.
(Ⅰ)設A為事件“選出的4人中恰有2名種子選手,且這2名種子選手來自同一個協(xié)會”,求事件A發(fā)生的概率;
(Ⅱ)設X為選出的4人中種子選手的人數(shù),求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.隨著我國經濟的發(fā)展,居民的儲蓄存款逐年增長.設某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(年底余額)如下表:
年份20102011201220132014
時間代號t12345
儲蓄存款y(千億元)567810
(Ⅰ)求y關于t的回歸方程$\widehat{y}$=$\widehat$t+$\widehat{a}$.
(Ⅱ)用所求回歸方程預測該地區(qū)2015年(t=6)的人民幣儲蓄存款.
附:回歸方程$\widehat{y}$=$\widehat$t+$\widehat{a}$中
$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}=\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{t}_{i}^{2}-n{\overline{t}}^{2}}}\\{a=\overline{y}-b\overline{t}}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=-2xlnx+x2-2ax+a2,其中a>0.
(Ⅰ)設g(x)是f(x)的導函數(shù),討論g(x)的單調性;
(Ⅱ)證明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在區(qū)間(1,+∞)內有唯一解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.△ABC的內角A,B,C所對的邊分別為a,b,c.向量$\overrightarrow{m}$=(a,$\sqrt{3}$b)與$\overrightarrow{n}$=(cosA,sinB)平行.
(Ⅰ)求A;
(Ⅱ)若a=$\sqrt{7}$,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若sinα=-$\frac{5}{13}$,則α為第四象限角,則tanα的值等于( 。
A.$\frac{12}{5}$B.-$\frac{12}{5}$C.$\frac{5}{12}$D.-$\frac{5}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.某校高一年級有900名學生,其中女生400名,按男女比例用分層抽樣的方法,從該年級學生中抽取一個容量為45的樣本,則應抽取的男生人數(shù)為25.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知$\overrightarrow{AB}⊥\overrightarrow{AC},|{\overrightarrow{AB}}|=\frac{1}{t},|{\overrightarrow{AC}}|=t$,若P點是△ABC所在平面內一點,且$\overrightarrow{AP}=\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|}}+\frac{{4\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|}}$,則$\overrightarrow{PB}•\overrightarrow{PC}$的最大值等于( 。
A.13B.15C.19D.21

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2$\sqrt{5}$,AA1=$\sqrt{7}$,BB1=2$\sqrt{7}$,點E和F分別為BC和A1C的中點.
(Ⅰ)求證:EF∥平面A1B1BA;
(Ⅱ)求證:平面AEA1⊥平面BCB1
(Ⅲ)求直線A1B1與平面BCB1所成角的大。

查看答案和解析>>

同步練習冊答案