分析 解法一:利用查二倍角公式求得sin215°的值,再利用兩角差的正切公式求得tan15°的值,可得要求式子的值.
解法二:利用同角三角函數(shù)的基本關(guān)系,化簡(jiǎn)所給的式子,可得結(jié)果.
解答 解:法一:∵sin215°=$\frac{1-cos30°}{2}$=$\frac{1-\frac{\sqrt{3}}{2}}{2}$=$\frac{2-\sqrt{3}}{4}$,
tan15°=tan(45°-30°)=$\frac{tan45°-tan30°}{1+tan30°tan45°}$=2-$\sqrt{3}$,
∴$\frac{{{{sin}^2}15°}}{tan15°}$=$\frac{\frac{2-\sqrt{3}}{4}}{2-\sqrt{3}}$=$\frac{1}{4}$,
故答案為:$\frac{1}{4}$.
解法二:$\frac{{{{sin}^2}15°}}{tan15°}$=$\frac{{sin}^{2}15°}{\frac{sin15°}{cos15°}}$=sin15°cos15°=$\frac{1}{2}$sin30°=$\frac{1}{4}$,
故答案為:$\frac{1}{4}$.
點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角公式、兩角差的正切公式的應(yīng)用,屬于基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x1+x2=8 | B. | x1+x2=4 | C. | y1+y2=8 | D. | y1+y2=4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | [1,8] | B. | [4,8] | C. | [1,10] | D. | [1,16] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (-2,0)∪(2,+∞) | B. | (-2,0)∪(0,2) | C. | (-∞,-2)∪(2,+∞) | D. | (-∞,-2)∪(0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{3}{7}$ | D. | 2 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com