【題目】淄博七中、臨淄中學(xué)為了加強(qiáng)交流,增進(jìn)友誼,兩校準(zhǔn)備舉行一場(chǎng)足球賽,由淄博七中版畫(huà)社的同學(xué)設(shè)計(jì)一幅矩形宣傳畫(huà),要求畫(huà)面面積為
,畫(huà)面的上、下各留
空白,左、右各留
空白.如何設(shè)計(jì)畫(huà)面的高與寬的尺寸,才能使宣傳畫(huà)所用紙張面積最小?
![]()
【答案】當(dāng)畫(huà)面高為80cm,寬為50cm時(shí),所需紙張面積最小為5760cm.
【解析】
設(shè)畫(huà)面高為xcm,寬為ycm,求出所需紙張面積S的表達(dá)式,利用基本不等式求解即可.
解:設(shè)畫(huà)面高為xcm,寬為ycm,依意有xy=4000,x>0,y>0
則所需紙張面積S=(x+16)(y+10)=xy+16y+10x+160,
即S=4160+16y+10x,
∵x>0,y>0,xy=4000
∴
,S≥5760.
當(dāng)且僅當(dāng)16y=10x,即x=80,y=50時(shí)等號(hào)成立.
即當(dāng)畫(huà)面高為80cm,寬為50cm時(shí),所需紙張面積最小為5760cm.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD中,AD⊥平面PAB,AP⊥AB.
![]()
(1)求證:CD⊥AP;
(2)若CD⊥PD,求證:CD∥平面PAB;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四種說(shuō)法正確的是( )
①若
和
都是定義在
上的函數(shù),則“
與
同是奇函數(shù)”是“
是偶函數(shù)”的充要條件
②命題 “
”的否定是“
≤0”
③命題“若x=2,則
”的逆命題是“若
,則x=2”
④命題
:在
中,若
,則
;
命題
:
在第一象限是增函數(shù);
則
為真命題
A. ①②③④ B. ①③ C. ③④ D. ③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】養(yǎng)路處建造圓錐形無(wú)底倉(cāng)庫(kù)用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉(cāng)庫(kù)的底面直徑為12m,高4m,養(yǎng)路處擬建一個(gè)更大的圓錐形倉(cāng)庫(kù),以存放更多食鹽,現(xiàn)有兩種方案:一是新建的倉(cāng)庫(kù)的底面直徑比原來(lái)大4m(高不變);二是高度增加4m(底面直徑不變).
(1)分別計(jì)算按這兩種方案所建的倉(cāng)庫(kù)的體積;
(2)分別計(jì)算按這兩種方案所建的倉(cāng)庫(kù)的表面積;
(3)哪個(gè)方案更經(jīng)濟(jì)些?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】由0、1、2、3、4五個(gè)數(shù)字任取三個(gè)數(shù)字,組成能被3整除的沒(méi)有重復(fù)數(shù)字的三位數(shù),共有( )個(gè).
A. 14B. 16C. 18D. 20
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲同學(xué)每投籃一次,投進(jìn)的概率均為
.
(1)求甲同學(xué)投籃4次,恰有3次投進(jìn)的概率;
(2)甲同學(xué)玩一個(gè)投籃游戲,其規(guī)則如下:最多投籃6次,連續(xù)2次不中則游戲終止.設(shè)甲同學(xué)在一次游戲中投籃的次數(shù)為
,求
的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,
底面
,底面
是直角梯形,
,
,
,
是
的中點(diǎn).
(1)求證:平面
平面
;
(2)若二面角
的余弦值為
,求直線(xiàn)
與平面
所成角的正弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(0,-2),橢圓E:
(a>b>0)的離心率為
,F是橢圓E的右焦點(diǎn),直線(xiàn)AF的斜率為
,O為坐標(biāo)原點(diǎn).
(1)求E的方程;
(2)設(shè)過(guò)點(diǎn)A的動(dòng)直線(xiàn)l與E相交于P,Q兩點(diǎn).當(dāng)△OPQ的面積最大時(shí),求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四面體
中,
分別為
的中點(diǎn),過(guò)
任作一個(gè)平面
分別與直線(xiàn)
相交于點(diǎn)
,則下列結(jié)論正確的是___________.①對(duì)于任意的平面
,都有直線(xiàn)
,
,
相交于同一點(diǎn);②存在一個(gè)平面
,使得點(diǎn)
在線(xiàn)段
上,點(diǎn)
在線(xiàn)段
的延長(zhǎng)線(xiàn)上; ③對(duì)于任意的平面
,都有
;④對(duì)于任意的平面
,當(dāng)
在線(xiàn)段
上時(shí),幾何體
的體積是一個(gè)定值.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com