【題目】已知函數(shù)f(x)=2|x+1|+|2x﹣a|(x∈R).
(1)當(dāng)a>﹣2時,函數(shù)f(x)的最小值為4,求實(shí)數(shù)a的值;
(2)若對于任意,x∈[﹣1,4],不等式f(x)≥3x恒成立,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:將函數(shù)分段為:
,
∴當(dāng)且僅當(dāng)
時,f(x)min=a+2,
由題意得a+2=4,即a=2
(2)解:當(dāng)x∈[﹣1,4]時f(x)≥3x恒成立|2x﹣a|≥x﹣2恒成立,
若﹣1≤x<2,不等式恒成立,此時a∈R;
若2≤x≤4,|2x﹣a|≥x﹣22x﹣a≥x﹣2或2x﹣a≤(x﹣2),
即a≤x+2或a≥3x﹣2在x∈[2,4]恒成立,所以a≤4或a≥10,
綜上知,所求實(shí)數(shù)a的取值范圍是(﹣∞,4]∪[10,+∞)
【解析】(1)求出函數(shù)的分段函數(shù)的形式,求出f(x)的最小值,得到關(guān)于a的方程,解出即可;(2)問題等價于|2x﹣a|≥x﹣2恒成立,通過討論x的范圍,求出a的范圍即可.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解絕對值不等式的解法(含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來大氣污染防治工作得到各級部門的重視,某企業(yè)在現(xiàn)有設(shè)備下每日生產(chǎn)總成本
(單位:萬元)與日產(chǎn)量
(單位:噸)之間的函數(shù)關(guān)系式為
,現(xiàn)為了配合環(huán)境衛(wèi)生綜合整治,該企業(yè)引進(jìn)了除塵設(shè)備,每噸產(chǎn)品除塵費(fèi)用為
萬元,除塵后當(dāng)日產(chǎn)量
時,總成本
.
(1)求
的值;
(2)若每噸產(chǎn)品出廠價為48萬元,試求除塵后日產(chǎn)量為多少時,每噸產(chǎn)品的利潤最大,最大利潤為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接夏季旅游旺季的到來,少林寺單獨(dú)設(shè)置了一個專門安排游客住宿的客棧,寺廟的工作人員發(fā)現(xiàn)為游客準(zhǔn)備的一些食物有些月份剩余不少,浪費(fèi)很嚴(yán)重,為了控制經(jīng)營成本,減少浪費(fèi),就想適時調(diào)整投入.為此他們統(tǒng)計每個月入住的游客人數(shù),發(fā)現(xiàn)每年各個月份來客棧入住的游客人數(shù)會發(fā)生周期性的變化,并且有以下規(guī)律:
①每年相同的月份,入住客棧的游客人數(shù)基本相同;
②入住客棧的游客人數(shù)在2月份最少,在8月份最多,相差約400人;
③2月份入住客棧的游客約為100人,隨后逐月遞增直到8月份達(dá)到最多.
(1)試用一個正弦型三角函數(shù)
描述一年中入住客棧的游客人數(shù)y與月x份之間的關(guān)系;
(2)請問哪幾個月份要準(zhǔn)備400份以上的食物?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:
=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2 , A為橢圓E的右頂點(diǎn),B,C分別為橢圓E的上、下頂點(diǎn).線段CF2的延長線與線段AB交于點(diǎn)M,與橢圓E交于點(diǎn)P.
(1)若橢圓的離心率為
,△PF1C的面積為12,求橢圓E的方程;
(2)設(shè)S
=λS
,求實(shí)數(shù)λ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,
![]()
已知圓
和圓
.
(1)若直線
過點(diǎn)
,且被圓
截得的弦長為
,
求直線
的方程;(2)設(shè)P為平面上的點(diǎn),滿足:
存在過點(diǎn)P的無窮多對互相垂直的直線
和
,
它們分別與圓
和圓
相交,且直線
被圓![]()
截得的弦長與直線
被圓
截得的弦長相等,試求所有滿足條件的點(diǎn)P的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=sin(ωx+φ)+
的圖象過(1,2),若f(x)相鄰的零點(diǎn)為x1 , x2且滿足|x1﹣x2|=6,則f(x)的單調(diào)增區(qū)間為( )
A.[﹣2+12k,4+12k](k∈Z)
B.[﹣5+12k,1+12k](k∈Z)
C.[1+12k,7+12k](k∈Z)
D.[﹣2+6k,1+6k](k∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,對任意的
,滿足
,其中
,
為常數(shù).
(1)若
的圖象在
處的切線經(jīng)過點(diǎn)
,求
的值;
(2)已知
,求證
;
(3)當(dāng)
存在三個不同的零點(diǎn)時,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三點(diǎn)
,
,
,曲線
上任意一點(diǎn)
滿足
.
(1)求
的方程;
(2)動點(diǎn)
在曲線
上,
是曲線
在
處的切線.問:是否存在定點(diǎn)
使得
與
都相交,交點(diǎn)分別為
,且
與
的面積之比為常數(shù)?若存在,求
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
﹣mx(m∈R). (Ⅰ)當(dāng)m=0時,討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當(dāng)b>a>0時,總有
>1成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com