【題目】如圖,在矩形
中,
,
,
是
的中點(diǎn).將
沿
折起,使折起后平面
平面
,則異面直線
和
所成角的余弦值為( )
![]()
A.
B.
C.
D. ![]()
【答案】A
【解析】
由題意,取AB中點(diǎn)F,連接CF,則CF∥AE,可得直線AE和CD所成角的平面角為∠DCF,結(jié)合已知求解△DCF三邊長(zhǎng)度,滿足直角三角形,可得cos∠DCF.
由題意,
取AB中點(diǎn)F,連接CF,則CF∥AE,可得直線AE和CD所成角的平面角為∠DCF,(如圖)
![]()
過(guò)D作DM垂直AE于M,平面DAE⊥平面ABCE,
AD=DE,
∴DM⊥AE,
∴DM⊥平面ABCE,∴DM⊥MF,
且AM=DM
,結(jié)合平面圖形可得:FM=
, ∴DF=
=1,CF=
,
又
=
, ∴
=
3,
![]()
∴在△DFC中,
=
,
∴△DFC是直角三角形且DF⊥FC,
可得cos∠DCF
.
故選A.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)
是拋物線
上的動(dòng)點(diǎn),
是
的準(zhǔn)線上的動(dòng)點(diǎn),直線
過(guò)
且與
(
為坐標(biāo)原點(diǎn))垂直,則點(diǎn)
到
的距離的最小值的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱
中,
平面
,
為
邊上一點(diǎn),
,
.
![]()
(1)證明:平面
平面
.
(2)若
,試問(wèn):
是否與平面
平行?若平行,求三棱錐
的體積;若不平行,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的是( )
A. “
”是“
”成立的充分不必要條件
B. 命題
,則![]()
C. 為了了解800名學(xué)生對(duì)學(xué)校某項(xiàng)教改試驗(yàn)的意見,用系統(tǒng)抽樣的方法從中抽取一個(gè)容量為40的樣本,則分組的組距為40
D. 已知回歸直線的斜率的估計(jì)值為1.23,樣本點(diǎn)的中心為
,則回歸直線方程為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量
(噸)與相應(yīng)的生產(chǎn)能耗
(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù)
|
|
|
|
|
|
|
|
|
|
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出
關(guān)于
的線性回歸方程
;
(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?
參考公式:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(-4,2)是Rt△
的直角頂點(diǎn),點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)B在x軸上.
(1)求直線AB的方程;
(2)求△OAB的外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,
點(diǎn)的極坐標(biāo)為
,斜率為
的直線
經(jīng)過(guò)點(diǎn)
.
(I)求曲線
的普通方程和直線
的參數(shù)方程;
(II)設(shè)直線
與曲線
相交于
,
兩點(diǎn),求線段
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)為了調(diào)查高粱的高度、粒的顏色與產(chǎn)量的關(guān)系,對(duì)700棵高粱進(jìn)行抽樣調(diào)查,得到高度頻數(shù)分布表如下:
表1:紅粒高粱頻數(shù)分布表
農(nóng)作物高度( |
|
|
|
|
|
|
頻 數(shù) | 2 | 5 | 14 | 13 | 4 | 2 |
表2:白粒高粱頻數(shù)分布表
農(nóng)作物高度( |
|
|
|
|
|
|
頻 數(shù) | 1 | 7 | 12 | 6 | 3 | 1 |
(1)估計(jì)這700棵高粱中紅粒高粱的棵數(shù);
(2)估計(jì)這700棵高粱中高粱高(
)在
的概率;
(3)在樣本的紅粒高粱中,從高度(單位:
)在
中任選3棵,設(shè)
表示所選3棵中高(單位:
)在
的棵數(shù),求
的分布列和數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體
中,四邊形
為正方形,
,
,
.
![]()
(1)證明:平面
平面
.
(2)若
平面
,二面角
為
,三棱錐
的外接球的球心為
,求二面角
的余弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com