【題目】(本小題滿分12分)
已知橢圓
:
的左、右頂點(diǎn)分別為A,B,其離心率
,點(diǎn)
為橢圓上的一個(gè)動(dòng)點(diǎn),
面積的最大值是
.
(1)求橢圓的方程;
(2)若過橢圓
右頂點(diǎn)
的直線
與橢圓的另一個(gè)交點(diǎn)為
,線段
的垂直平分線與
軸交于點(diǎn)
,當(dāng)
時(shí),求點(diǎn)
的坐標(biāo).
【答案】(1)
(2)當(dāng)
時(shí),
,當(dāng)
時(shí),![]()
【解析】
(1)由題意可知
解方程即可得解;
(2)設(shè)直線
的方程為
,
,由直線與橢圓聯(lián)立得
,由根與系數(shù)的關(guān)系可得
,從而得
中點(diǎn)的坐標(biāo),進(jìn)而得
的垂直平分線方程,令x=0可得
,再由
,用坐標(biāo)表示即可解
.
(1)由題意可知
解得
,
,
所以橢圓方程為
.
(2)由(1)知
,設(shè)直線
的方程為
,
,
把
代入橢圓方程
,
整理得
,
所以
,則
,
所以
中點(diǎn)的坐標(biāo)為
,
則直線
的垂直平分線方程為
,得![]()
又
,即
,
化簡(jiǎn)得
,
解得![]()
故當(dāng)
時(shí),
,當(dāng)
時(shí),
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=
(a>0,且a≠1)的值域?yàn)椋ī仭蓿?∞),則實(shí)數(shù)a的取值范圍是( )
A.(3,+∞)
B.(0,
]
C.(1,3)
D.[
,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如表是一個(gè)由n2個(gè)正數(shù)組成的數(shù)表,用aij表示第i行第j個(gè)數(shù)(i,j∈N),已知數(shù)表中第一列各數(shù)從上到下依次構(gòu)成等差數(shù)列,每一行各數(shù)從左到右依次構(gòu)成等比數(shù)列,且公比都相等.已知a11=1,a31+a61=9,a35=48. ![]()
(1)求an1和a4n;
(2)設(shè)bn=
+(﹣1)na
(n∈N+),求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
為坐標(biāo)原點(diǎn),
是橢圓
上的點(diǎn),設(shè)動(dòng)點(diǎn)
滿足
.
(1)求動(dòng)點(diǎn)
的軌跡
的方程;
(2)若直線
與曲線
相交于
,
兩個(gè)不同點(diǎn),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
上一點(diǎn)
到其焦點(diǎn)
的距離為4,橢圓
的離心率
,且過拋物線的焦點(diǎn)
.
(1)求拋物線
和橢圓
的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)
的直線
交拋物線
于
兩不同點(diǎn),交
軸于點(diǎn)
,已知
,
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,命題
對(duì)
,不等式
恒成立;命題
對(duì)
,不等式
恒成立.
(1)若命題
為真命題,求實(shí)數(shù)
的取值范圍;
(2)若
為假,
為真,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年上半年,股票投資人袁先生同時(shí)投資了甲、乙兩只股票,其中甲股票賺錢的概率為
,賠錢的概率是
;乙股票賺錢的概率為
,賠錢的概率為
.對(duì)于甲股票,若賺錢則會(huì)賺取5萬元,若賠錢則損失4萬元;對(duì)于乙股票,若賺錢則會(huì)賺取6萬元,若賠錢則損失5萬元.
(Ⅰ)求袁先生2016年上半年同時(shí)投資甲、乙兩只股票賺錢的概率;
(Ⅱ)試求袁先生2016年上半年同事投資甲、乙兩只股票的總收益的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,已知圓
的方程為:
,直線
的方程為
.
(1)求證:直線
恒過定點(diǎn);
(2)當(dāng)直線
被圓
截得的弦長(zhǎng)最短時(shí),求直線
的方程;
(3)在(2)的前提下,若
為直線
上的動(dòng)點(diǎn),且圓
上存在兩個(gè)不同的點(diǎn)到點(diǎn)
的距離為
,求點(diǎn)
的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長(zhǎng)方體ABCD﹣A1B1C1D1中,AA1=AD=a,E為CD上任意一點(diǎn).
(I)求證:B1E⊥AD1;
(Ⅱ)若CD=
a,是否存在這樣的E點(diǎn),使得AD1與平面B1AE成45°的角?說明理由.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com