分析 (1)設(shè)點(diǎn)M(x,y),P(x0,y0),則由題意知P0(x0,0),由$\overrightarrow{M{P}_{0}}$=$\frac{\sqrt{3}}{2}$$\overrightarrow{P{P}_{0}}$可得點(diǎn)M與點(diǎn)P坐標(biāo)間的關(guān)系式,再根據(jù)點(diǎn)P在圓上代入P點(diǎn)坐標(biāo)即可得到M坐標(biāo)方程,即所求軌跡方程;
(2)直線l:y=x+1與(1)中的軌跡C聯(lián)立可得7x2+8x-8=0,利用韋達(dá)定理,即可求弦長(zhǎng)|AB|的值.
解答 解:(1)設(shè)點(diǎn)M(x,y),P(x0,y0),則由題意知P0(x0,0).
由$\overrightarrow{M{P}_{0}}$=$\frac{\sqrt{3}}{2}$$\overrightarrow{P{P}_{0}}$得(x0-x,-y)=$\frac{\sqrt{3}}{2}$(0,-y0).
所以x0-x=0,-y=-$\frac{\sqrt{3}}{2}$y0.
于是x0=x,y0=$\frac{2}{\sqrt{3}}$y,
又x02+y02=4,所以x2+$\frac{4}{3}$y2=4.
所以,點(diǎn)M的軌跡C的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
(2)直線l:y=x+1與(1)中的軌跡C聯(lián)立可得7x2+8x-8=0.
所以x1x2=-$\frac{8}{7}$,x1+x2=-$\frac{8}{7}$,
所以|AB|=$\sqrt{2}•\sqrt{(-\frac{8}{7})^{2}+4×\frac{8}{7}}$=$\frac{24}{7}$
點(diǎn)評(píng) 本題考查直線與圓錐曲線的位置關(guān)系、軌跡方程、直弦長(zhǎng)等有關(guān)知識(shí),考查學(xué)生綜合運(yùn)用所學(xué)知識(shí)分析問(wèn)題解決問(wèn)題的能力,綜合性強(qiáng).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 平面就是平行四邊形 | |
| B. | 空間任意三點(diǎn)可以確定一個(gè)平面 | |
| C. | 兩兩相交的三條直線可以確定一個(gè)平面 | |
| D. | 空間四點(diǎn)不共面,則其中任意三點(diǎn)不共線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $-\frac{3}{2}$ | B. | $\frac{3}{2}$ | C. | 6 | D. | -6 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com