【題目】已知定義域為
的函數(shù)
對任意實數(shù)
,
滿足:
,且
,
,并且當(dāng)
時,
.給出如下結(jié)論:①函數(shù)
是偶函數(shù);②函數(shù)
在
上單調(diào)遞增;③函數(shù)
是以2為周期的周期函數(shù);④
.其中正確的結(jié)論是( )
A.①②B.②③C.①④D.③④
【答案】B
【解析】
①令y=-x,利用函數(shù)的奇偶性定義和題中關(guān)系式,可推導(dǎo)出f(-x)=-f(x)的關(guān)系是奇函數(shù)非偶函數(shù);②令
,利用函數(shù)單調(diào)性定義和題中關(guān)系式,可判斷f(x1)>f(x2)可得為增函數(shù);③由題中關(guān)系式用x+2代x,-x代y,可推導(dǎo)f(x+2)=f(x);④利用函數(shù)周期性將f(
)化簡為f(
).
令
,可得
,∴
,函數(shù)
是奇函數(shù),故①不正確;
設(shè)
,則∵當(dāng)
時,
,
∴
,∴
,∴函數(shù)
在
上單調(diào)遞增,故②正確;
∵![]()
,∴
,
∴函數(shù)
是以2為周期的周期函數(shù),故③正確;
∵
,故④不正確;
綜上所述:答案為B.
故選:B
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱柱
的底面是邊長為
的菱形,且
,
平面
,
,
于點(diǎn)
,點(diǎn)
是
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)求平面
和平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“工資條里顯紅利,個稅新政人民心”.隨著2019年新年鐘聲的敲響,我國自1980年以來,力度最大的一次個人所得稅(簡稱個稅)改革迎來了全面實施的階段.2019年1月1日實施的個稅新政主要內(nèi)容包括:(1)個稅起征點(diǎn)為5000元;(2)每月應(yīng)納稅所得額(含稅)=收入-個稅起征點(diǎn)-專項附加扣除;(3)專項附加扣除包括住房、子女教育和贍養(yǎng)老人等.
新舊個稅政策下每月應(yīng)納稅所得額(含稅)計算方法及其對應(yīng)的稅率表如下:
舊個稅稅率表(個稅起征點(diǎn)3500元) | 新個稅稅率表(個稅起征點(diǎn)5000元) | |||
繳稅級數(shù) | 每月應(yīng)納稅所得額(含稅)=收入-個稅起征點(diǎn) | 稅率(%) | 每月應(yīng)納稅所得額(含稅)=收入-個稅起征點(diǎn)-專項附加扣除 | 稅率(%) |
1 | 不超過1500元部分 | 3 | 不超過3000元部分 | 3 |
2 | 超過1500元至4500元部分 | 10 | 超過3000元至12000元部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 超過12000元至25000元的部分 | 20 |
4 | 超過9000元至35000元的部分 | 25 | 超過25000元至35000元的部分 | 25 |
5 | 超過35000元至55000元部分 | 30 | 超過35000元至55000元部分 | 30 |
··· | ··· | ··· | ··· | ··· |
隨機(jī)抽取某市1000名同一收入層級的
從業(yè)者的相關(guān)資料,經(jīng)統(tǒng)計分析,預(yù)估他們2019年的人均月收入24000元.統(tǒng)計資料還表明,他們均符合住房專項扣除;同時,他們每人至多只有一個符合子女教育扣除的孩子,并且他們之中既不符合子女教育扣除又不符合贍養(yǎng)老人扣除、只符合子女教育扣除但不符合贍養(yǎng)老人扣除、只符合贍養(yǎng)老人扣除但不符合子女教育扣除、即符合子女教育扣除又符合贍養(yǎng)老人扣除的人數(shù)之比是2:1:1:1;此外,他們均不符合其他專項附加扣除.新個稅政策下該市的專項附加扣除標(biāo)準(zhǔn)為:住房1000元/月,子女教育每孩1000元/月,贍養(yǎng)老人2000元/月等。
假設(shè)該市該收入層級的
從業(yè)者都獨(dú)自享受專項附加扣除,將預(yù)估的該市該收入層級的
從業(yè)者的人均月收入視為其個人月收入.根據(jù)樣本估計總體的思想,解決如下問題:
(1)設(shè)該市該收入層級的
從業(yè)者2019年月繳個稅為
元,求
的分布列和期望;
(2)根據(jù)新舊個稅方案,估計從2019年1月開始,經(jīng)過多少個月,該市該收入層級的
從業(yè)者各月少繳交的個稅之和就超過2019年的月收入?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于數(shù)列
,定義“
變換”:
將數(shù)列
變換成數(shù)列
,其中
,且
,這種“
變換”記作
.繼續(xù)對數(shù)列
進(jìn)行“
變換”,得到數(shù)列
,依此類推,當(dāng)?shù)玫降臄?shù)列各項均為
時變換結(jié)束.
(1)試問
和
經(jīng)過不斷的“
變換”能否結(jié)束?若能,請依次寫出經(jīng)過“
變換”得到的各數(shù)列;若不能,說明理由;
(2)求
經(jīng)過有限次“
變換”后能夠結(jié)束的充要條件;
(3)證明:
一定能經(jīng)過有限次“
變換”后結(jié)束.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面
平面
,四邊形
和
都是邊長為2的正方形,點(diǎn)
,
分別是
,
的中點(diǎn),二面角
的大小為60°.
![]()
(1)求證:
平面
;
(2)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,
,
,點(diǎn)F、E分別是BC、CD的中點(diǎn),現(xiàn)沿AE將
折起,使點(diǎn)D至點(diǎn)M的位置,且
.
![]()
![]()
(1)證明:
平面MEF;
(2)求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為
(
,a為常數(shù))),過點(diǎn)
、傾斜角為
的直線
的參數(shù)方程滿足
,(
為參數(shù)).
(1)求曲線C的普通方程和直線
的參數(shù)方程;
(2)若直線
與曲線C相交于A、B兩點(diǎn)(點(diǎn)P在A、B之間),且
,求
和
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
的參數(shù)方程為
(其中
為參數(shù)),以原點(diǎn)為極點(diǎn),
軸非負(fù)半軸為極軸建立極坐標(biāo)系,則曲線
的極坐標(biāo)方程為
.
(1)求圓
的普通方程與
的直角坐標(biāo)方程;
(2)點(diǎn)
是曲線
上一點(diǎn),由
向圓
引切線,切點(diǎn)分別為
,求四邊形
面積的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com