分析 利用誘導(dǎo)公式變形判斷①;由f($-\frac{π}{6}$)的值判斷②④;求出函數(shù)的最小正周期判斷③.
解答 解:∵f(x)=4sin(2x+$\frac{π}{3}$)=4cos[$\frac{π}{2}$-(2x+$\frac{π}{3}$)]=4cos(2x-$\frac{π}{6}$),∴①錯誤;
∵f($-\frac{π}{6}$)=4cos[2×(-$\frac{π}{6}$)-$\frac{π}{6}$]=4cos($-\frac{π}{2}$)=0,∴y=f(x)的圖象關(guān)于點(-$\frac{π}{6}$,0)對稱,故②正確;
函數(shù)f(x)=4sin(2x+$\frac{π}{3}$)的最小正周期T=$\frac{2π}{2}=π$,故③錯誤;
由②知④錯誤.
故答案為:②.
點評 本題考查命題的真假判斷與應(yīng)用,考查y=Asin(ωx+φ)型函數(shù)的圖象和性質(zhì),是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 32 | B. | $32\sqrt{7}$ | C. | $16\sqrt{7}$ | D. | $64\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com