【題目】設(shè)平面內(nèi)的向量
,
,
,點(diǎn)P在直線OM上,且
.
(1)求
的坐標(biāo);
(2)求∠APB的余弦值;
(3)設(shè)t∈R,求
的最小值.
【答案】
(1)解:∵點(diǎn)P在直線OM上,設(shè)
∴
, ![]()
∴
,解得
,
∴
.
(2)解:
,
,
∴ ![]()
(3)解:
,
∴
=2(t﹣2)2+2.
當(dāng)t=2時,(
+t
)2取得最小值2,
∴
的最小值為
.
【解析】(1)根據(jù)P,O,M三點(diǎn)共線可設(shè)
,利用數(shù)量積公式列方程解出;(2)計算
的模長,代入向量夾角公式計算;(3)計算
2得到關(guān)于t的二次函數(shù),求出函數(shù)的最小值即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用平面向量的坐標(biāo)運(yùn)算的相關(guān)知識可以得到問題的答案,需要掌握坐標(biāo)運(yùn)算:設(shè)
,
則
;
;設(shè)
,則
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(示意),公路AM、AN圍成的是一塊頂角為α的角形耕地,其中tanα=-2.在該塊土地中P處有一小型建筑,經(jīng)測量,它到公路AM,AN的距離分別為3km,km.現(xiàn)要過點(diǎn)P修建一條直線公路BC,將三條公路圍成的區(qū)域ABC建成一個工業(yè)園.為盡量減少耕地占用,問如何確定B點(diǎn)的位置,使得該工業(yè)園區(qū)的面積最。坎⑶笞钚∶娣e.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1和雙曲線C2焦點(diǎn)相同,且離心率互為倒數(shù),F(xiàn)1 , F2它們的公共焦點(diǎn),P是橢圓和雙曲線在第一象限的交點(diǎn),當(dāng)∠F1PF2=60°時,則橢圓C1的離心率為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線
在直角坐標(biāo)系
中的參數(shù)方程為
為參數(shù),
為傾斜角),以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸,建立極坐標(biāo)系,在極坐標(biāo)系中,曲線的方程為
.
(1)寫出曲線
的直角坐標(biāo)方程;
(2)點(diǎn)
,若直線
與曲線
交于
兩點(diǎn),求使
為定值的
值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高三年級從甲(文)、乙(理)兩個科組各選出7名學(xué)生參加高校自主招生數(shù)學(xué)選拔考試,他們?nèi)〉玫某煽兊那o葉圖如圖所示,其中甲組學(xué)生的平均分是85,乙組學(xué)生成績的中位數(shù)是83.![]()
(1)求x和y的值;
(2)計算甲組7位學(xué)生成績的方差S2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)有100名學(xué)員參加交通法規(guī)考試,考試成績的頻率分布直方圖如圖所示.其中成績分組區(qū)間是:第1組:[75,80),第2組:[80,85),第3組:[85,90),第4組:[90,95),第5組:[95,100].
(1)求圖中a的值,并估計此次考試成績的中位數(shù)(結(jié)果保留一位小數(shù));
(2)在第2、4小組中用分層抽樣的方法抽取5人,再從這5人中隨機(jī)選取2人進(jìn)行面試,求至少有一人來自第2小組的概率.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
為參數(shù)),在以原點(diǎn)為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程和直線
的傾斜角;
(2)設(shè)點(diǎn)
,直線
和曲線
交于
,
兩點(diǎn),求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,直線
.
(1)若直線
與曲線
相切,求切點(diǎn)橫坐標(biāo)的值;
(2)若函數(shù)
,求證:
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com