| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| 1 |
| 2 |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(16分)有如下結(jié)論:“圓
上一點(diǎn)
處的切線方程為
”,類比也有結(jié)論:“橢圓
處的切線方程為
”,過橢圓C:
的右準(zhǔn)線l上任意一點(diǎn)M引橢圓C的兩條切線,切點(diǎn)為 A、B.
(1)求證:直線AB恒過一定點(diǎn);(2)當(dāng)點(diǎn)M在的縱坐標(biāo)為1時(shí),求△ABM的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市海淀區(qū)高三5月查漏補(bǔ)缺數(shù)學(xué)試卷(解析版) 題型:解答題
若圓C過點(diǎn)M(0,1)且與直線
相切,設(shè)圓心C的軌跡為曲線E,A、B(A在y軸的右側(cè))為曲線E上的兩點(diǎn),點(diǎn)
,且滿足![]()
(Ⅰ)求曲線E的方程;
(Ⅱ)若t=6,直線AB的斜率為
,過A、B兩點(diǎn)的圓N與拋物線在點(diǎn)A處共同的切線,求圓N的方程;
(Ⅲ)分別過A、B作曲線E的切線,兩條切線交于點(diǎn)
,若點(diǎn)
恰好在直線
上,求證:t與
均為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省淄博市高三第一學(xué)期期末數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
如圖,圓
與圓
的半徑都等于1,
. 過動(dòng)點(diǎn)
分別作圓
、圓
的切線
(
分別為切點(diǎn)),使得|PM|=|PN|.
試建立適當(dāng)?shù)淖鴺?biāo)系,并求動(dòng)點(diǎn)
的軌跡方程.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com