【題目】已知定義在區(qū)間
上的函數(shù)y=f(x)的圖象關(guān)于直線x=-
對(duì)稱,當(dāng)x∈
時(shí),函數(shù)f(x)=Asin(ωx+φ)
的圖象如圖所示.
![]()
(1)求函數(shù)y=f(x)在
上的表達(dá)式;
(2)求方程f(x)=
的解.
【答案】(1)
;(2)∴x=-
或-
或-
或
.
【解析】
試題解:(1)當(dāng)x∈
時(shí),A=1,
=
-
,T=2π,ω=1.
且f(x)=sin(x+φ)過點(diǎn)
,
則
+φ=π,φ=
.
f(x)=sin
.
當(dāng)-π≤x<-
時(shí),-
≤-x-
≤
,
f
=sin
,
而函數(shù)y=f(x)的圖象關(guān)于直線x=-
對(duì)稱,
則f(x)=f
,
即f(x)=sin
=-sinx,-π≤x<-
.
∴![]()
(2)當(dāng)-
≤x≤
時(shí),
≤x+
≤π,
由f(x)=sin
=
,
得x+
=
或
,x=-
或
.
當(dāng)-π≤x<-
時(shí),由f(x)=-sinx=
,sinx=-
,
得x=-
或-
.
∴x=-
或-
或-
或
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的圖象在
軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的坐標(biāo)分別為
和
.若將函數(shù)
的圖象向左平移
個(gè)單位長(zhǎng)度后得到的圖象關(guān)于原點(diǎn)對(duì)稱.
(1)求函數(shù)
的解析式;
(2)若函數(shù)
的周期為
,當(dāng)
時(shí),方程
恰有兩個(gè)不同的解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某桶裝水經(jīng)營(yíng)部每天的房租,人員工資等固定成本為200元,每桶水的進(jìn)價(jià)是5元,銷售價(jià)
(元)與日均銷售量
(桶)的關(guān)系如下表,為了收費(fèi)方便,經(jīng)營(yíng)部將銷售價(jià)定為整數(shù),并保持經(jīng)營(yíng)部每天盈利.
| 6 | 7 | 8 | 9 | 10 | 11 | 12 | … |
| 480 | 440 | 400 | 360 | 320 | 280 | 240 | … |
(1)寫出
的值,并解釋其實(shí)際意義;
(2)求
表達(dá)式,并求其定義域;
(3)求經(jīng)營(yíng)部利潤(rùn)表達(dá)式
,請(qǐng)問經(jīng)營(yíng)部怎樣定價(jià)才能獲得最大利潤(rùn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】復(fù)利是一種計(jì)算利息的方法.即把前一期的利息和本金加在一起算作本金,再計(jì)算下一期的利息.某同學(xué)有壓歲錢1000元,存入銀行,年利率為2.25%;若放入微信零錢通或
者支付寶的余額寶,年利率可達(dá)4.01%.如果將這1000元選擇合適方式存滿5年,可以多獲利息( )元.(參考數(shù)據(jù):
)
A. 176 B. 100 C. 77 D. 88
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《算法統(tǒng)宗》是中國(guó)古代數(shù)學(xué)名著,由明代數(shù)學(xué)家程大位所著,該作完善了珠算口訣,確立了算盤用法,完成了由籌算到珠算的徹底轉(zhuǎn)變,該作中有題為“李白沽酒”“李白街上走,提壺去買酒。遇店加一倍,見花喝一斗,三遇店和花,喝光壺中酒。借問此壺中,原有多少酒?”,如圖為該問題的程序框圖,若輸出的
值為0,則開始輸入的
值為( )
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的焦距為
,斜率為
的直線與橢圓交于
兩點(diǎn),若線段
的中點(diǎn)為
,且直線
的斜率為
.
(1)求橢圓
的方程;
(2)若過左焦點(diǎn)
斜率為
的直線
與橢圓交于點(diǎn)
為橢圓上一點(diǎn),且滿足
,問:
是否為定值?若是,求出此定值,若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)
在區(qū)間
上有最大值4,最小值0.
(1)求函數(shù)
的解析式;
(2)設(shè)
,若
在
時(shí)恒成立,求
的范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com