【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點
為極點,以
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,直線
與曲線
交于
兩點.
(1)求直線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)若點
的極坐標(biāo)為
,求
的面積.
【答案】(1)
:
,C:
;(2)
.
【解析】試題分析:(1)消參得到直線的普通方程,對于曲線
,
,再利用
化解為曲線的直角坐標(biāo)方程;(2)將直線的參數(shù)方程代入曲線C的普通方程,得到
,根據(jù)
,根據(jù)根與系數(shù)的關(guān)系得到弦長,再計算點到直線的距離,從而求得三角形的面積.
試題解析:(1)
直線
的參數(shù)方程為
,①+②得
,故
的普通方程為
.
又曲線
的極坐標(biāo)方程為
,即9
,
.
,即
,
(2)
點
的極坐標(biāo)為
,
的直角坐標(biāo)為(-1,1).
點
到直線
的距離
.
將
,代入
中得
.
設(shè)交點
、
對應(yīng)的參數(shù)值分別為
,則
,
.
![]()
的面積
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時,解不等式
;
(2)畫出該函數(shù)的圖象,并寫出該函數(shù)的單調(diào)區(qū)間(不用證明);
(3)若函數(shù)
恰有3個不同零點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若函數(shù)
在
上是減函數(shù),求實數(shù)
的取值范圍;
(2)若函數(shù)
在
上存在兩個極值點
,且
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內(nèi),西紅柿市場銷售價與上市時間的關(guān)系用圖(1)的一條折線表示;西紅柿的種植成本與上市時間的關(guān)系用圖(2)的拋物線段表示.
![]()
![]()
(1)寫出圖(1)表示的市場售價與時間的函數(shù)關(guān)系式
寫出圖(2)表示的種植成本與時間的函數(shù)關(guān)系式![]()
(2)認(rèn)定市場售價減去種植成本為純收益,問何時上市的西紅柿收益最大?(注:市場售價和種植成本的單位:元/
kg,時間單位:天.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,且
.
(1)判斷函數(shù)
的奇偶性;
(2) 判斷函數(shù)
在(1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論;
(3)若
,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知指數(shù)函數(shù)
滿足
.又定義域為實數(shù)集R的函數(shù)
是奇函數(shù).
①確定
的解析式;
②求
的值;
③若對任意的
R,不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次體能測試中,某研究院對該地區(qū)甲、乙兩學(xué)校做抽樣調(diào)查,所得學(xué)生的測試成績?nèi)缦卤硭荆?/span>
![]()
(1)將甲、乙兩學(xué)校學(xué)生的成績整理在所給的莖葉圖中,并分別計算其平均數(shù);
![]()
(2)若在乙學(xué)校被抽取的10名學(xué)生中任選3人檢測肺活量,求被抽到的3人中,至少2人成績超過80分的概率;
(3)以甲學(xué)校的體能測試情況估計該地區(qū)所有學(xué)生的體能情況,則若從該地區(qū)隨機抽取4名學(xué)生,記測試成績在80分以上(含80分)的人數(shù)為
,求
的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下判斷正確的是 ( )
A. 函數(shù)
為
上的可導(dǎo)函數(shù),則
是
為函數(shù)
極值點的充要條件
B. 若命題
為假命題,則命題
與命題
均為假命題
C. 若
,則
的逆命題為真命題
D. 在
中,“
”是“
”的充要條件
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com