【題目】已知函數(shù)
.
(1)求
的單調(diào)區(qū)間;
(2)設(shè)
,若對任意
,均存在
使得
,求
的取值范圍.
【答案】(1)見解析;(2)
.
【解析】
(1)
.然后對
分類討論求得函數(shù)的單調(diào)區(qū)間.
(2)
,即為
,令
,則由已知在
上有
,從而求導(dǎo)確定函數(shù)的最值,從而由最值確定
的取值范圍.
(1)
.
①當(dāng)
時,
,
,
在區(qū)間
上,
;在區(qū)間
上
,
故
的單調(diào)遞增區(qū)間是
,單調(diào)遞減區(qū)間是
.
②當(dāng)
時,
,
在區(qū)間
和
上,
;在區(qū)間
上
,
故
的單調(diào)遞增區(qū)間是
和
,單調(diào)遞減區(qū)間是
.
③當(dāng)
時,
,故
的單調(diào)遞增區(qū)間是
.
④當(dāng)
時,
,在區(qū)間
和
上,
;區(qū)間
上
,
故
的單調(diào)遞增區(qū)間是
和
,單調(diào)遞減區(qū)間是
.
(2)設(shè)
,
由已知,在
上有
.
![]()
|
| 1 |
| 2 |
| + | 0 | - | |
| 增 | 0 | 減 |
|
所以
,
由(1)可知,
①當(dāng)
時,
在
上單調(diào)遞增,
故![]()
,
所以,
,解得
,故
.
②當(dāng)
時,
在
上單調(diào)遞增,在
上單調(diào)遞減,
故
.
由
可知
,
,
,
所以,
,
,
綜上所述,
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的焦距為
,點(diǎn)
在橢圓
上,且
的最小值是
(
為坐標(biāo)原點(diǎn)).
(1)求橢圓
的標(biāo)準(zhǔn)方程.
(2)已知動直線
與圓
:
相切,且與橢圓
交于
,
兩點(diǎn).是否存在實(shí)數(shù)
,使得
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)討論
的單調(diào)性;
(2)當(dāng)
時,設(shè)
的兩個極值點(diǎn)為
,
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大數(shù)據(jù)時代對于現(xiàn)代人的數(shù)據(jù)分析能力要求越來越高,數(shù)據(jù)擬合是一種把現(xiàn)有數(shù)據(jù)通過數(shù)學(xué)方法來代入某條數(shù)式的表示方式,比如
,![]()
,2,
,n是平面直角坐標(biāo)系上的一系列點(diǎn),用函數(shù)
來擬合該組數(shù)據(jù),盡可能使得函數(shù)圖象與點(diǎn)列
比較接近.其中一種描述接近程度的指標(biāo)是函數(shù)的擬合誤差,擬合誤差越小越好,定義函數(shù)
的擬合誤差為:
.已知平面直角坐標(biāo)系上5個點(diǎn)的坐標(biāo)數(shù)據(jù)如表:
x | 1 | 3 | 5 | 7 | 9 |
y | 12 |
| 4 |
| 12 |
若用一次函數(shù)
來擬合上述表格中的數(shù)據(jù),求該函數(shù)的擬合誤差
的最小值,并求出此時的函數(shù)解析式
;
若用二次函數(shù)
來擬合題干表格中的數(shù)據(jù),求
;
請比較第
問中的
和第
問中的
,用哪一個函數(shù)擬合題目中給出的數(shù)據(jù)更好?
請至少寫出三條理由![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)
是定義在
上的奇函數(shù),當(dāng)
時,
,則函數(shù)
在
上的所有零點(diǎn)之和為( )
A.7B.8C.9D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的可導(dǎo)函數(shù)
滿足
,記
的導(dǎo)函數(shù)為
,當(dāng)
時恒有
.若
,則m的取值范圍是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示在四棱錐
中,下底面
為正方形,平面
平面
,
為以
為斜邊的等腰直角三角形,
,若點(diǎn)
是線段
上的中點(diǎn).
![]()
(1)證明
平面
.
(2)求二面角
的平面角的余弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com