【題目】下列函數(shù)中,既沒有對稱中心,也沒有對稱軸的有( )
①
②
③
④![]()
A.
個(gè)B.
個(gè)C.
個(gè)D.
個(gè)
【答案】C
【解析】
對于①,通過函數(shù)的平移變換可求得對稱中心;對于②通過輔助角公式可求得對稱軸; 對于③可根據(jù)奇偶性判斷出對稱軸;對于④根據(jù)圖像平移和翻折變化可知無對稱軸或?qū)ΨQ中心,即可判斷選項(xiàng).
對于①,分離參數(shù)化簡可得
.把函數(shù)
向左平移一個(gè)單位,向上平移一個(gè)單位,可得
,所以
的對稱中心為
,即①有對稱中心.
對于②,由輔助角公式化簡可得
,所以對稱軸為
.即對稱軸為
,所以②有對稱軸.
對于③,
則
所以函數(shù)
為偶函數(shù),關(guān)于
軸對稱,所以③有對稱軸;
對于④,
的圖像.可由
向下平移一個(gè)單位,再把圖像在
軸下方的部分翻折到
軸上方(
軸上方的原函數(shù)圖像不變).由圖像可知
沒有對稱軸,也沒有對稱中心.所以④沒有對稱軸,也沒有對稱中心
綜上可知, 既沒有對稱中心,也沒有對稱軸的有1個(gè)
故選:C
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ACDE與等腰直角三角形ACB所在的平面互相垂直,且AC=BC=2,∠ACB=90°,F,G分別是線段AE,BC的中點(diǎn),則AD與GF所成的角的余弦值為( )
![]()
(A)
(B)-
(C)
(D)-![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)
滿足
,若
只在點(diǎn)(4,3)處取得最大值,則
的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的一個(gè)焦點(diǎn)與上、下頂點(diǎn)構(gòu)成直角三角形,以橢圓
的長軸長為直徑的圓與直線
相切.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)設(shè)過橢圓右焦點(diǎn)且不平行于
軸的動(dòng)直線與橢圓
相交于
兩點(diǎn),探究在
軸上是否存在定點(diǎn)
,使得
為定值?若存在,試求出定值和點(diǎn)
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市居民自來水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水量不超過4噸時(shí),每噸為2元;當(dāng)用水量超4噸時(shí),超過部分每噸為3元.八月甲、乙兩用戶共交水費(fèi)
元,已知甲、乙兩用戶月用水量分別為
噸、
噸.
(1)求
關(guān)于
的函數(shù);
(2)若甲、乙兩用戶八月共交34元,分別求甲、乙兩用戶八月的用水量和水費(fèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計(jì)劃購買2臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時(shí),可以額外購買這種零件作為備件,每個(gè)200元.在機(jī)器使用期間,如果備件不足再購買,則每個(gè)500元.現(xiàn)需決策在購買機(jī)器時(shí)應(yīng)同時(shí)購買幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:
![]()
以這100臺(tái)機(jī)器更換的易損零件數(shù)的頻率代替1臺(tái)機(jī)器更換的易損零件數(shù)發(fā)生的概率,記
表示2臺(tái)機(jī)器三年內(nèi)共需更換的易損零件數(shù),
表示購買2臺(tái)機(jī)器的同時(shí)購買的易損零件數(shù).
(Ⅰ)求
的分布列;
(Ⅱ)若要求
,確定
的最小值;
(Ⅲ)以購買易損零件所需費(fèi)用的期望值為決策依據(jù),在
與
之中選其一,應(yīng)選用哪個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān), 現(xiàn)收集了該種藥用昆蟲的6組觀測數(shù)據(jù)如下表:
溫度x/C | 21 | 23 | 24 | 27 | 29 | 32 |
產(chǎn)卵數(shù)y/個(gè) | 6 | 11 | 20 | 27 | 57 | 77 |
經(jīng)計(jì)算得:
,
,
,
,
,線性回歸模型的殘差平方和
,e8.0605≈3167,其中xi, yi分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1, 2, 3, 4, 5, 6.
(Ⅰ)若用線性回歸模型,求y關(guān)于x的回歸方程
=
x+
(精確到0.1);
(Ⅱ)若用非線性回歸模型求得y關(guān)于x的回歸方程為
=0.06e0.2303x,且相關(guān)指數(shù)R2=0.9522.
( i )試與(Ⅰ)中的回歸模型相比,用R2說明哪種模型的擬合效果更好.
( ii )用擬合效果好的模型預(yù)測溫度為35C時(shí)該種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).
附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn ), 其回歸直線
=
x+
的斜率和截距的最小二乘估計(jì)為
=![]()
;相關(guān)指數(shù)R2=
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)命題:
①函數(shù)
的最小值是2;
②等差數(shù)列
的前n項(xiàng)和為
,滿足
,
,則當(dāng)
時(shí),
取最大值;
③等比數(shù)列
的前n項(xiàng)和為
,若
,
,則
;
④
,
恒成立,則實(shí)數(shù)a的取值范圍是
.
其中所有正確命題的序號(hào)是________________________.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com