【題目】在某單位的食堂中,食堂每天以10元/斤的價格購進米粉,然后以4.4元/碗的價格出售,每碗內(nèi)含米粉0.2斤,如果當天賣不完,剩下的米粉以2元/斤的價格賣給養(yǎng)豬場.根據(jù)以往統(tǒng)計資料,得到食堂某天米粉需求量的頻率分布直方圖如圖所示,若食堂購進了80斤米粉,以
(斤)(其中
)表示米粉的需求量,
(元)表示利潤.
(1)計算當天米粉需求量的平均數(shù),并直接寫出需求量的眾數(shù)和中位數(shù);
(2)估計該天食堂利潤不少于760元的概率.
![]()
【答案】(1)答案見解析;(2)0.65.
【解析】試題分析:
(1)利用中點近似頻率分布直方圖的數(shù)值計算可得平均數(shù)為75.5;讀取頻率分布直方圖可得眾數(shù)為75;中位數(shù)為75.
(2)由題意可得利潤函數(shù)為:
結合頻率分布直方圖計算可得食堂利潤不少于760元的概率是0.65.
試題解析:
(1)由頻率分布直方圖知, ![]()
所以平均數(shù)為75.5;眾數(shù)為75;中位數(shù)為75.
(2)一斤米粉的售價是
元.
當
時,
.
當
時,
.
故![]()
設利潤
不少于760元為事件
,
利潤
不少于760元時,即
.
解得
,即
.
由直方圖可知,當
時,
.
故該天食堂利潤不少于760元的概率為0.65.
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)有甲、乙兩套設備生產(chǎn)同一種產(chǎn)品,為了檢測兩套設備的生產(chǎn)質(zhì)量情況,隨機從兩套設備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本,檢測一項質(zhì)量指標值,若該項質(zhì)量指標值落在
內(nèi),則為合格品,否則為不合格品. 表1是甲套設備的樣本的頻數(shù)分布表,圖1是乙套設備的樣本的頻率分布直方圖.
表1:甲套設備的樣本的頻數(shù)分布表
質(zhì)量指標值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
頻數(shù) | 1 | 4 | 19 | 20 | 5 | 1 |
圖1:乙套設備的樣本的頻率分布直方圖
![]()
(1)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與甲、乙兩套設備的選擇有關;
甲套設備 | 乙套設備 | 合計 | |||||||||||||
合格品 | |||||||||||||||
不合格品 | |||||||||||||||
合計 | ,求 |
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正四棱錐S-ABCD中,SA=AB=2,E,F,G分別為BC,SC,CD的中點.設P為線段FG上任意一點.
(1)求證:EP⊥AC;
(2)當P為線段FG的中點時,求直線BP與平面EFG所成角的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,B1B=B1A=AB=BC,∠B1BC=90°,D為AC的中點,AB⊥B1D.
(1)求證:平面ABB1A1⊥平面ABC;
(2)在線段CC1(不含端點)上,是否存在點E,使得二面角E-B1D-B的余弦值為-
?若存在,求出
的值;若不存在,說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直角三角形
中,
是
的中點,
是線段
上一個動點,且
,如圖所示,沿
將
翻折至
,使得平面
平面
.
![]()
(1)當
時,證明:
平面
;
(2)是否存在
,使得
與平面
所成的角的正弦值是
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,則下列結論正確的是( )
A. 導函數(shù)為![]()
B. 函數(shù)f(x)的圖象關于直線
對稱
C. 函數(shù)f(x)在區(qū)間
上是增函數(shù)
D. 函數(shù)f(x)的圖象可由函數(shù)y=3cos 2x的圖象向右平移
個單位長度得到
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線
:
與圓
相交的弦長等于橢圓
:
(
)的焦距長.
(1)求橢圓
的方程;
(2)已知
為原點,橢圓
與拋物線
(
)交于
、
兩點,點
為橢圓
上一動點,若直線
、
與
軸分別交于
、
兩點,求證:
為定值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com