【題目】近年來,隨著
網(wǎng)絡(luò)的普及和智能手機的更新?lián)Q代,各種方便的
相繼出世,其功能也是五花八門.某大學為了調(diào)查在校大學生使用
的主要用途,隨機抽取了
名大學生進行調(diào)查,各主要用途與對應(yīng)人數(shù)的結(jié)果統(tǒng)計如圖所示,現(xiàn)有如下說法:
①可以估計使用
主要聽音樂的大學生人數(shù)多于主要看社區(qū)、新聞、資訊的大學生人數(shù);
②可以估計不足
的大學生使用
主要玩游戲;
③可以估計使用
主要找人聊天的大學生超過總數(shù)的
.
其中正確的個數(shù)為( )
![]()
A.
B.
C.
D.![]()
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)![]()
常數(shù)
)滿足
.
(1)求出
的值,并就常數(shù)
的不同取值討論函數(shù)
奇偶性;
(2)若
在區(qū)間
上單調(diào)遞減,求
的最小值;
(3)在(2)的條件下,當
取最小值時,證明:
恰有一個零點
且存在遞增的正整數(shù)數(shù)列
,使得
成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司租賃甲、乙兩種設(shè)備生產(chǎn)A,B兩類產(chǎn)品,甲種設(shè)備每天能生產(chǎn)A類產(chǎn)品5件和B類產(chǎn)品10件,乙種設(shè)備每天能生產(chǎn)A類產(chǎn)品6件和B類產(chǎn)品20件.已知設(shè)備甲每天的租賃費為200元,設(shè)備乙每天的租賃費為300元,現(xiàn)該公司至少要生產(chǎn)A類產(chǎn)品50件,B類產(chǎn)品140件,所需租賃費最少為__________元.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex+e-x,其中e是自然對數(shù)的底數(shù).
(1)證明:f(x)是R上的偶函數(shù);
(2)若關(guān)于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求實數(shù)m的取值范圍;
(3)已知正數(shù)a滿足:存在x0∈[1,+∞),使得f(x0)<a(-
+3x0)成立.試比較ea-1與ae-1的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
滿足
,若在區(qū)間
內(nèi)關(guān)于
的方程
恰有4個不同的實數(shù)解,則實數(shù)
的取值范圍是___________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面直角坐標系
中,直線
的參數(shù)方程為
(
為參數(shù)).以原點
為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
,且直線
與曲線
交于
、
兩點.
(1)求實數(shù)
的取值范圍;
(2)若
,點
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,圓柱的軸截面
是邊長為2的正方形,點P是圓弧
上的一動點(不與
重合),點Q是圓弧
的中點,且點
在平面
的兩側(cè).
![]()
(1)證明:平面
平面
;
(2)設(shè)點P在平面
上的射影為點O,點
分別是
和
的重心,當三棱錐
體積最大時,回答下列問題.
(i)證明:
平面
;
(ii)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.在頻率分布直方圖中,眾數(shù)左邊和右邊的直方圖的面積相等;
B.為調(diào)查高三年級的240名學生完成作業(yè)所需的時間,由教務(wù)處對高三年級的學生進行編號,從001到240抽取學號最后一位為3的學生進行調(diào)查,則這種抽樣方法為分層抽樣;
C.“
”是“
”的必要不充分條件;
D.命題
:“
,使得
”的否定為:“
,均有
”.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com