| A. | [4k+1,4k+3](k∈Z) | B. | [2k+1,2k+3](k∈Z) | C. | [2k+1,2k+2](k∈Z) | D. | [2k-1,2k+2](k∈Z) |
分析 根據(jù)圖象的變換規(guī)則逐步得出函數(shù)解析式,利用正弦函數(shù)的單調(diào)性即可得解.
解答 解:∵將函數(shù)f(x)=$\sqrt{3}$cos(πx)圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)解析式為:y=$\sqrt{3}$cos($\frac{1}{2}$πx);
再把圖象上所有的點(diǎn)向右平移1個(gè)單位長度,得到函數(shù)的解析式為:g(x)=$\sqrt{3}$cos[$\frac{1}{2}$π(x-1)];
∴可得:$g(x)=\sqrt{3}sin\frac{π}{2}x$,
∵由2k$π+\frac{π}{2}$≤$\frac{πx}{2}$≤2kπ+$\frac{3π}{2}$,k∈Z,解得:4k+1≤x≤4k+3,k∈Z,
可得函數(shù)g(x)的單調(diào)遞減區(qū)間是:[4k+1,4k+3],k∈Z,
由2kπ-$\frac{π}{2}$≤$\frac{πx}{2}$≤2k$π+\frac{π}{2}$,k∈Z,解得:4k-1≤x≤4k+1,k∈Z,
可得函數(shù)g(x)的單調(diào)遞增區(qū)間是:[4k-1,4k+1],k∈Z,
對比各個(gè)選項(xiàng),只有A正確.
故選:A.
點(diǎn)評 本題考查了函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,考查了正弦函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 充分不必要條件 | B. | 必要不充分條件 | ||
| C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $?{n_0}∈N*,{a_{n_0}}+{a_{{n_0}+2}}=2{a_{{n_0}+1}}$ | |
| B. | ?n∈N*,an•an+1≤an+2 | |
| C. | ?n∈N*,Sn<an+1 | |
| D. | $?{n_0}∈N*,{a_{n_0}}+{a_{{n_0}+3}}={a_{{n_0}+1}}+{a_{{n_0}+2}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | n=6 | B. | n<6 | C. | n≤6 | D. | n≤8 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com