【題目】已知函數(shù)
,
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)
時,對任意的
,存在
,使得
成立,試確定實數(shù)m的取值范圍.
【答案】(1)當(dāng)
時,
的單調(diào)遞增區(qū)間是
,無遞減區(qū)間;當(dāng)
時,
的單調(diào)遞增區(qū)間是
,遞減區(qū)間是
;(2)
.
【解析】
(1)求得
的導(dǎo)函數(shù),對
分成
和
兩種情況,討論函數(shù)
的單調(diào)區(qū)間.
(2)將問題轉(zhuǎn)化為
,利用導(dǎo)數(shù)求得
的最小值,結(jié)合(1)對
分成
三種情況進(jìn)行分類討論,求得
的最小值.從而確定
的取值范圍.
(1)由
,得
.當(dāng)
時,
,所以
的單調(diào)遞增區(qū)間是
,沒有減區(qū)間.當(dāng)
時,由
,解得
;由
,解得
,所以
的單調(diào)遞增區(qū)間是
,遞減區(qū)間是
.綜上所述,當(dāng)
時,
的單調(diào)遞增區(qū)間是
,無遞減區(qū)間;當(dāng)
時,
的單調(diào)遞增區(qū)間是
,遞減區(qū)間是
.
(2)當(dāng)
時,對任意
,存在
,使得
成立,只需
成立.
由
,得
.令
,則
.所以當(dāng)
時,
,當(dāng)
時,
.所以
在
上遞減,在
上遞增,且
,所以
.所以
,即
在
上遞增,所以
在
上遞增,所以
.
由(1)知,當(dāng)
時,
在
上遞增,在
上遞減,
①當(dāng)
即
時,
在
上遞減,
;
②當(dāng)
即
時,
在
上遞增,在
上遞減,
,由
,
當(dāng)
時,
,此時
,
當(dāng)
時,
,此時
,
③當(dāng)
即
時,
在
上遞增,
,
所以當(dāng)
時,
,
由
,得![]()
當(dāng)
時,
,
由
,得
.
![]()
.綜上,所求實數(shù)m的取值范圍是
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點為極點,
軸的正半軸為極軸,以相同的長度單位建立極坐標(biāo)系,已知直線
的極坐標(biāo)方程為
,曲線
的極坐標(biāo)方程為
,![]()
(l)設(shè)
為參數(shù),若
,求直線
的參數(shù)方程;
(2)已知直線
與曲線
交于
,
設(shè)
,且
,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
在平面直角坐標(biāo)系中,以坐標(biāo)原點O為極點,x軸正半軸為極軸,建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為:
,經(jīng)過點
,傾斜角為
的直線l與曲線C交于A,B兩點
(I)求曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程;
(Ⅱ)求
的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
九章算術(shù)
中對一些特殊的幾何體有特定的稱謂,例如:將底面為直角三角形的直三棱柱稱為塹堵,將一塹堵沿其一頂點與相對的棱刨開,得到一個陽馬
底面是長方形,且有一條側(cè)棱與底面垂直的四棱錐
和一個鱉臑
四個面均為直角三角形的四面體
在如圖所示的塹堵
中,已知
,若陽馬
的外接球的表面積等于
,則鱉臑
的所有棱中,最長的棱的棱長為( )
![]()
A.5B.
C.
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}、{bn}滿足:a1=
,an+bn=1,bn+1=
.
(1)求a2,a3;
(2)證數(shù)列
為等差數(shù)列,并求數(shù)列{an}和{bn}的通項公式;
(3)設(shè)Sn=a1a2+a2a3+a3a4+…+anan+1,求實數(shù)λ為何值時4λSn<bn恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:極坐標(biāo)與參數(shù)方程
已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點,曲線C:
(α為參數(shù)),在以平面直角坐標(biāo)系的原點為極點,x軸的正半軸為極軸,取相同單位長度的極坐標(biāo)系,直線l:ρ
.
(Ⅰ)求曲線C的普通方程和直線l的直角坐標(biāo)方程;
(Ⅱ)曲線C上恰好存在三個不同的點到直線l的距離相等,分別求出這三個點的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是定義在
上的奇函數(shù),當(dāng)
時,
,當(dāng)
時,
,若直線
與函數(shù)
的圖象恰有7個不同的公共點,則實數(shù)
的取值范圍為_________.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com