【題目】德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其命名的函數(shù)
被稱為狄利克雷函數(shù),其中R為實數(shù)集,Q為有理數(shù)集,以下命題正確的個數(shù)是( )
下面給出關(guān)于狄利克雷函數(shù)f(x)的五個結(jié)論:
①對于任意的x∈R,都有f(f(x))=1;
②函數(shù)f(x)偶函數(shù);
③函數(shù)f(x)的值域是{0,1};
④若T≠0且T為有理數(shù),則f(x+T)=f(x)對任意的x∈R恒成立;
⑤在f(x)圖象上存在不同的三個點A,B,C,使得△ABC為等邊角形.
A.2B.3C.4D.5
【答案】D
【解析】
①分
,
兩種情況從內(nèi)到外,利用
求值判斷.②分
,
兩種情況,利用奇偶性定義判斷.③當
時,
;當
時,
判斷.④分
,
兩種情況,利用周期函數(shù)的定義判斷.⑤取
,
判斷.
①當
時,
,則
;當
時,
,則
,所以對于任意的x∈R,都有f(f(x))=1;故正確.
②當
時,
,
;當
時,
,
,所以函數(shù)f(x)偶函數(shù);故正確.
③當
時,
;當
時,
,所以函數(shù)f(x)的值域是{0,1};故正確.
④當
時,因為T≠0且T為有理數(shù),所以
,則f(x+T)=1=f(x);當
時,因為T≠0且T為有理數(shù),所以
,則f(x+T)=0=f(x),所以對任意的x∈R恒成立;故正確.
⑤取
,
構(gòu)成以
為邊長的等邊三角形,故正確.
故選:D
科目:高中數(shù)學(xué) 來源: 題型:
【題目】這次新冠肺炎疫情,是新中國成立以來在我國發(fā)生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發(fā)公共衛(wèi)生事件.中華民族歷史上經(jīng)歷過很多磨難,但從來沒有被壓垮過,而是愈挫愈勇,不斷在磨難中成長,從磨難中奮起.在這次疫情中,全國人民展現(xiàn)出既有責(zé)任擔(dān)當之勇、又有科學(xué)防控之智.某校高三學(xué)生也展開了對這次疫情的研究,一名同學(xué)在數(shù)據(jù)統(tǒng)計中發(fā)現(xiàn),從2020年2月1日至2月7日期間,日期
和全國累計報告確診病例數(shù)量
(單位:萬人)之間的關(guān)系如下表:
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
全國累計報告確診病例數(shù)量 | 1.4 | 1.7 | 2.0 | 2.4 | 2.8 | 3.1 | 3.5 |
(1)根據(jù)表中的數(shù)據(jù),運用相關(guān)系數(shù)進行分析說明,是否可以用線性回歸模型擬合
與
的關(guān)系?
(2)求出
關(guān)于
的線性回歸方程
(系數(shù)精確到0.01).并預(yù)測2月10日全國累計報告確診病例數(shù).
參考數(shù)據(jù):
,
,
,
.
參考公式:相關(guān)系數(shù)![]()
回歸方程
中斜率和截距的最小二乘估計公式分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形
為菱形,
,
平面
,
,
∥
,
為
中點.
![]()
(1)求證:
∥平面
;
(2)求證:
;
(3)若
為線段
上的點,當三棱錐
的體積為
時,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
.
(1)當
=-1時,求
的單調(diào)區(qū)間及值域;
(2)若
在(
)上為增函數(shù),求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐
的底面
為直角梯形,
,
,
,
為正三角形.
![]()
(1)點
為棱
上一點,若
平面
,
,求實數(shù)
的值;
(2)求點B到平面SAD的距離.
【答案】(1)
;(2)![]()
【解析】試題分析:(1)由
平面
,可證
,進而證得四邊形
為平行四邊形,根據(jù)
,可得
;
(2)利用等體積法
可求點
到平面
的距離.
試題解析:((1)因為
平面SDM,
![]()
平面ABCD,
平面SDM
平面ABCD=DM,
所以
,
因為
,所以四邊形BCDM為平行四邊形,又
,所以M為AB的中點.
因為
,
.
![]()
(2)因為
,
,
所以
平面
,
又因為
平面
,
所以平面
平面
,
平面
平面
,
在平面
內(nèi)過點
作
直線
于點
,則
平面
,
在
和
中,
因為
,所以
,
又由題知
,
所以
,
由已知求得
,所以
,
連接BD,則
,
又求得
的面積為
,
所以由
點B 到平面
的距離為
.
【題型】解答題
【結(jié)束】
19
【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元.
(1)請分別求出甲、乙兩種薪酬方案中日薪
(單位:元)與送貨單數(shù)
的函數(shù)關(guān)系式;
(2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)滿足以下條件:在這100天中的派送量指標滿足如圖所示的直方圖,其中當某天的派送量指標在
時,日平均派送量為
單.
若將頻率視為概率,回答下列問題:
![]()
①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為
(單位:元),試分別求出甲、乙兩種方案的日薪
的分布列,數(shù)學(xué)期望及方差;
②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計學(xué)的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由.
(參考數(shù)據(jù):
,
,
,
,
,
,
,
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,
是
的導(dǎo)數(shù),若存在
,使得
成立,則實數(shù)
的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
,離心率
,點
在橢圓上.
![]()
(1)求橢圓C的標準方程;
(2)設(shè)點P是橢圓C上一點,左頂點為A,上頂點為B,直線PA與y軸交于點M,直線PB與x軸交于點N,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌服裝店五一進行促銷活動,店老板為了擴大品牌的知名度同時增強活動的趣味性,約定打折辦法如下:有兩個不透明袋子,一個袋中放著編號為1,2,3的三個小球,另一個袋中放著編號為4,5的兩個小球(小球除編號外其它都相同),顧客需從兩個袋中各抽一個小球,兩球的編號之和即為該顧客買衣服所打的折數(shù)(如,一位顧客抽得的兩個小球的編號分別為2,5,則該顧客所習(xí)的買衣服打7折).要求每位顧客先確定購買衣服后再取球確定打折數(shù).已知
三位顧客各買了一件衣服.
(1)求三位顧客中恰有兩位顧客的衣服均打6折的概率;
(2)
兩位顧客都選了定價為2000元的一件衣服,設(shè)
為打折后兩位顧客的消費總額,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2a·4x-2x-1.
(1)當a=1時,解不等式f(x)>0;
(2)當a=
,x∈[0,2]時,求f(x)的值域.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com