【題目】四棱錐
的底面
為直角梯形,
,
,
,
為正三角形.
![]()
(1)點
為棱
上一點,若
平面
,
,求實數(shù)
的值;
(2)求點B到平面SAD的距離.
【答案】(1)
;(2)![]()
【解析】試題分析:(1)由
平面
,可證
,進(jìn)而證得四邊形
為平行四邊形,根據(jù)
,可得
;
(2)利用等體積法
可求點
到平面
的距離.
試題解析:((1)因為
平面SDM,
![]()
平面ABCD,
平面SDM
平面ABCD=DM,
所以
,
因為
,所以四邊形BCDM為平行四邊形,又
,所以M為AB的中點.
因為
,
.
![]()
(2)因為
,
,
所以
平面
,
又因為
平面
,
所以平面
平面
,
平面
平面
,
在平面
內(nèi)過點
作
直線
于點
,則
平面
,
在
和
中,
因為
,所以
,
又由題知
,
所以
,
由已知求得
,所以
,
連接BD,則
,
又求得
的面積為
,
所以由
點B 到平面
的距離為
.
【題型】解答題
【結(jié)束】
19
【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元.
(1)請分別求出甲、乙兩種薪酬方案中日薪
(單位:元)與送貨單數(shù)
的函數(shù)關(guān)系式;
(2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)滿足以下條件:在這100天中的派送量指標(biāo)滿足如圖所示的直方圖,其中當(dāng)某天的派送量指標(biāo)在
時,日平均派送量為
單.
若將頻率視為概率,回答下列問題:
![]()
①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為
(單位:元),試分別求出甲、乙兩種方案的日薪
的分布列,數(shù)學(xué)期望及方差;
②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計學(xué)的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由.
(參考數(shù)據(jù):
,
,
,
,
,
,
,
,
)
【答案】(1)
;(2)見解析
【解析】試題分析:
根據(jù)已知條件寫出函數(shù)關(guān)系式,分別求出分布列,然后算出數(shù)學(xué)期望與方差
運用不同的比較方法求出最優(yōu)解
解析:(1)甲方案中派送員日薪
(單位:元)與送單數(shù)
的函數(shù)關(guān)系式為:
,
乙方案中派送員日薪
(單位:元)與送單數(shù)
的函數(shù)關(guān)系式為:
,
①由已知,在這100天中,該公司派送員日平均派送單數(shù)滿足如下表格:
單數(shù) | 52 | 54 | 56 | 58 | 60 |
頻率 | 0.2 | 0.3 | 0.2 | 0.2 | 0.1 |
所以
的分布列為:
| 152 | 154 | 156 | 158 | 160 |
| 0.2 | 0.3 | 0.2 | 0.2 | 0.1 |
所以
,
,
所以
的分布列為:
| 140 | 152 | 176 | 200 |
| 0.5 | 0.2 | 0.2 | 0.1 |
所以
,
,
②答案一:
由以上的計算可知,雖然
,但兩者相差不大,且
遠(yuǎn)小于
,即甲方案日工資收入波動相對較小,所以小明應(yīng)選擇甲方案.
答案二:
由以上的計算結(jié)果可以看出,
,即甲方案日工資期望小于乙方案日工資期望,所以小明應(yīng)選擇乙方案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線
:
,半徑為2的圓
與
相切,圓心
在
軸上且在直線
的右上方.
![]()
(1)求圓
的方程;
(2)過點
的直線與圓
交于
,
兩點(
在
軸上方),問在
軸正半軸上是否存在定點
,使得
軸平分
?若存在,請求出點
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求經(jīng)過直線3x+4y-2=0與直線x-y+4=0的交點P,且垂直于直線x-2y-1=0的直線方程;
(2)求過點P(-1,3),并且在兩坐標(biāo)軸上的截距相等的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知
=(cosx+sinx,sinx),
=(cosx-sinx,2cosx),
(Ⅰ)求證:向量
與向量
不可能平行;(Ⅱ)若f(x)=
·,且x∈
時,求函數(shù)f(x)的最大值及最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其命名的函數(shù)
被稱為狄利克雷函數(shù),其中R為實數(shù)集,Q為有理數(shù)集,以下命題正確的個數(shù)是( )
下面給出關(guān)于狄利克雷函數(shù)f(x)的五個結(jié)論:
①對于任意的x∈R,都有f(f(x))=1;
②函數(shù)f(x)偶函數(shù);
③函數(shù)f(x)的值域是{0,1};
④若T≠0且T為有理數(shù),則f(x+T)=f(x)對任意的x∈R恒成立;
⑤在f(x)圖象上存在不同的三個點A,B,C,使得△ABC為等邊角形.
A.2B.3C.4D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生物興趣小組對冬季晝夜溫差與反季節(jié)新品種大豆發(fā)芽數(shù)之間的關(guān)系進(jìn)行研究,他們分別記錄了
月
日至
月
日每天的晝夜溫差與實驗室每天
顆種子的發(fā)芽數(shù),得到以下表格
![]()
該興趣小組確定的研究方案是:先從這
組數(shù)據(jù)中選取
組數(shù)據(jù),然后用剩下的
組數(shù)據(jù)求線性回歸方程,再用被選取的
組數(shù)據(jù)進(jìn)行檢驗.
(1) 求統(tǒng)計數(shù)據(jù)中發(fā)芽數(shù)的平均數(shù)與方差;
(2) 若選取的是
月
日與
月
日的兩組數(shù)據(jù),請根據(jù)
月
日至
月
日的數(shù)據(jù),求出發(fā)芽數(shù)
關(guān)于溫差
的線性回歸方程
,若由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗數(shù)據(jù)的誤差不超過
,則認(rèn)為得到的線性回歸方程是可靠的,問得到的線性回歸方程是否可靠? 附:線性回歸方程
中斜率和截距最小二乘估法計算公式:
, ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ) 當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)
在區(qū)間
上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市
戶居民的月平均用電量(單位:度),以
,
,
,
,
,
,
分組的頻率分布直方圖如圖.
![]()
(1)求直方圖中
的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為
,
,
,
的四組用戶中,用分層抽樣的方法抽取
戶居民,則月平均用電量在
的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com