【題目】已知函數(shù)
.
(1)討論當(dāng)
時(shí),函數(shù)
的單調(diào)性;
(2)當(dāng)
對(duì)任意的
恒成立,其中
.求
的取值范圍.
【答案】(1)
在
為增函數(shù)(2)![]()
【解析】
(1)將
代入函數(shù)解析式,可求得函數(shù)解析式及
,由
的單調(diào)性及導(dǎo)函數(shù)與函數(shù)單調(diào)性關(guān)系即可判斷.
(2)由題意可知
對(duì)任意的
恒成立,求得
,并構(gòu)造函數(shù)
,求得
,可判斷
在
上的單調(diào)性,從而可得存在
,使得
,進(jìn)而可得
,由
可得方程
,代入
中,可由
求得
的取值范圍.
(1)函數(shù)
,
將
代入,可得
,則
,
.
當(dāng)
為單調(diào)遞增函數(shù),
,
所以
在
為增函數(shù);
(2)由已知有
,其中
,
.
![]()
.
令
,其中
,
.
由
得
在
上單調(diào)遞增.
又
,當(dāng)
時(shí),
,
故存在
,使得
.
當(dāng)
時(shí),
,
,
在
上單調(diào)遞減;
當(dāng)
時(shí),
,
,
在
上單調(diào)遞增.
故![]()
.
由
得,
,即
.
則![]()
![]()
![]()
.
令
,由
,
,解得
.
因?yàn)?/span>
在
上單調(diào)遞增,
,所以
.
故
,即
,解得
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的導(dǎo)數(shù)
滿足f(x)+x
>
對(duì)x∈R恒成立,且實(shí)數(shù)x,y滿足xf(x)﹣yf(y)>f(y)﹣f(x),則下列關(guān)系式恒成立的是( )
A.
B.ln(x2+1)>ln(y2+1)
C.
D.x﹣y>sinx﹣siny
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的
,
,
,
四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說:“是
或
作品獲得一等獎(jiǎng)”;
乙說:“
作品獲得一等獎(jiǎng)”;
丙說:“
,
兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說:“是
作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+2x+c,若不等式f(x)<0的解集是{x|-4<x<2}.
(1)求f(x)的解析式;
(2)判斷f(x)在(0,+∞)上的單調(diào)性,并用定義證明;
(3)若函數(shù)f(x)在區(qū)間[m,m+2]上的最小值為-5,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】6名教師分配到3所薄弱學(xué)校去支教,每個(gè)學(xué)校至少分配一名教師,甲乙兩人不能去同一所學(xué)校,丙丁兩人必須去同一所學(xué)校,共有________種分配方案(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C:
(a>b>0)的離心率為
,短軸長(zhǎng)是2.
![]()
(1)求橢圓C的方程;
(2)設(shè)橢圓C的下頂點(diǎn)為D,過點(diǎn)D作兩條互相垂直的直線l1,l2,這兩條直線與橢圓C的另一個(gè)交點(diǎn)分別為M,N.設(shè)l1的斜率為k(k≠0),△DMN的面積為S,當(dāng)
,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,則方程
恰有2個(gè)不同的實(shí)根,實(shí)數(shù)
取值范圍__________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】科學(xué)研究表明:人類對(duì)聲音有不的感覺,這與聲音的強(qiáng)度
單位:瓦
平方米
有關(guān)
在實(shí)際測(cè)量時(shí),常用
單位:分貝
來表示聲音強(qiáng)弱的等級(jí),它與聲音的強(qiáng)度I滿足關(guān)系式:
是常數(shù)
,其中
瓦
平方米
如風(fēng)吹落葉沙沙聲的強(qiáng)度
瓦
平方米,它的強(qiáng)弱等級(jí)
分貝.
已知生活中幾種聲音的強(qiáng)度如表:
聲音來源
聲音大小 | 風(fēng)吹落葉沙沙聲 | 輕聲耳語(yǔ) | 很嘈雜的馬路 |
強(qiáng)度 |
|
|
|
強(qiáng)弱等級(jí) | 10 | m | 90 |
求a和m的值
為了不影響正常的休息和睡眠,聲音的強(qiáng)弱等級(jí)一般不能超過50分貝,求此時(shí)聲音強(qiáng)度I的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“函數(shù)
在區(qū)間
上單調(diào)”是“函數(shù)
在
上有反函數(shù)”的( )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分又不必要條件
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com