【題目】已知函數(shù)
,
.
(1)若對(duì)于任意實(shí)數(shù)
,
恒成立,求實(shí)數(shù)
的范圍;
(2)當(dāng)
時(shí),是否存在實(shí)數(shù)
,使曲線
:
在點(diǎn)
處的切線與
軸垂直?若存在,求出
的值;若不存在,說(shuō)明理由.
【答案】(1)
;(2)不存在實(shí)數(shù)
,使曲線
在點(diǎn)
處的切線與
軸垂直.
【解析】
(1)分類
時(shí),恒成立,
時(shí),分離參數(shù)為
,引入新函數(shù)
,利用導(dǎo)數(shù)求得函數(shù)最值即可;
(2)
,導(dǎo)出導(dǎo)函數(shù)
,問(wèn)題轉(zhuǎn)化為
在
上有解.再用導(dǎo)數(shù)研究
的性質(zhì)可得.
解:(1)因?yàn)楫?dāng)
時(shí),
恒成立,
所以,若
,
為任意實(shí)數(shù),
恒成立.
若
,
恒成立,
即當(dāng)
時(shí),
,
設(shè)
,
,
當(dāng)
時(shí),
,則
在
上單調(diào)遞增,
當(dāng)
時(shí),
,則
在
上單調(diào)遞減,
所以當(dāng)
時(shí),
取得最大值.
,
所以,要使
時(shí),
恒成立,
的取值范圍為
.
(2)由題意,曲線
為:
.
令
,
所以
,
設(shè)
,則
,
當(dāng)
時(shí),
,
故
在
上為增函數(shù),因此
在區(qū)間
上的最小值
,
所以
,
當(dāng)
時(shí),
,
,
所以
,
曲線
在點(diǎn)
處的切線與
軸垂直等價(jià)于方程
在
上有實(shí)數(shù)解.
而
,即方程
無(wú)實(shí)數(shù)解.
故不存在實(shí)數(shù)
,使曲線
在點(diǎn)
處的切線與
軸垂直.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
的左頂點(diǎn)為
,右焦點(diǎn)為
,斜率為1的直線與橢圓
交于
,
兩點(diǎn),且
,其中
為坐標(biāo)原點(diǎn).
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)設(shè)過(guò)點(diǎn)
且與直線
平行的直線與橢圓
交于
,
兩點(diǎn),若點(diǎn)
滿足
,且
與橢圓
的另一個(gè)交點(diǎn)為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】生男生女都一樣,女兒也是傳后人.由于某些地區(qū)仍然存在封建傳統(tǒng)思想,頭胎的男女情況可能會(huì)影響生二孩的意愿,現(xiàn)隨機(jī)抽取某地200戶家庭進(jìn)行調(diào)查統(tǒng)計(jì).這200戶家庭中,頭胎為女孩的頻率為0.5,生二孩的頻率為0.525,其中頭胎生女孩且生二孩的家庭數(shù)為60.
(1)完成下列
列聯(lián)表,并判斷能否有95%的把握認(rèn)為是否生二孩與頭胎的男女情況有關(guān);
生二孩 | 不生二孩 | 合計(jì) | |
頭胎為女孩 | 60 | ||
頭胎為男孩 | |||
合計(jì) | 200 |
(2)在抽取的200戶家庭的樣本中,按照分層抽樣的方法在生二孩的家庭中抽取了7戶,進(jìn)一步了解情況,在抽取的7戶中再隨機(jī)抽取4戶,求抽到的頭胎是女孩的家庭戶數(shù)
的分布列及數(shù)學(xué)期望.
附:
| 0.15 | 0.05 | 0.01 | 0.001 |
| 2.072 | 3.841 | 6.635 | 10.828 |
(其中
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一家公司生產(chǎn)某種品牌服裝的年固定成本為
萬(wàn)元,每生產(chǎn)
千件需另投入
萬(wàn)元.設(shè)該公司一年內(nèi)共生產(chǎn)該品牌服裝
千件并全部銷售完,每千件的銷售收入為
萬(wàn)元,且
.
(1)寫出年利潤(rùn)
(萬(wàn)元)關(guān)于年產(chǎn)量
(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該公司在這一品牌服裝的生產(chǎn)中所獲得利潤(rùn)最大?(注:年利潤(rùn)=年銷售收入-年總成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在綜合素質(zhì)評(píng)價(jià)的某個(gè)維度的測(cè)評(píng)中,依據(jù)評(píng)分細(xì)則,學(xué)生之間相互打分,最終將所有的數(shù)據(jù)合成一個(gè)分?jǐn)?shù),滿分100分,按照大于或等于80分的為優(yōu)秀,小于80分的為合格,為了解學(xué)生的在該維度的測(cè)評(píng)結(jié)果,在畢業(yè)班中隨機(jī)抽出一個(gè)班的數(shù)據(jù).該班共有60名學(xué)生,得到如下的列聯(lián)表:
優(yōu)秀 | 合格 | 總計(jì) | |
男生 | 6 | ||
女生 | 18 | ||
合計(jì) | 60 |
已知在該班隨機(jī)抽取1人測(cè)評(píng)結(jié)果為優(yōu)秀的概率為
.
(1)完成上面的列聯(lián)表;
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為性別與測(cè)評(píng)結(jié)果有關(guān)系?
(3)現(xiàn)在如果想了解全校學(xué)生在該維度的表現(xiàn)情況,采取簡(jiǎn)單隨機(jī)抽樣方式在全校學(xué)生中抽取少數(shù)一部分來(lái)分析,請(qǐng)你選擇一個(gè)合適的抽樣方法,并解釋理由.
附:![]()
| 0.25 | 0.10 | 0.025 |
| 1.323 | 2.706 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市正在進(jìn)行創(chuàng)建全國(guó)文明城市的復(fù)驗(yàn)工作,為了解市民對(duì)“創(chuàng)建全國(guó)文明城市”的知識(shí)知曉程度,某權(quán)威調(diào)查機(jī)構(gòu)對(duì)市民進(jìn)行隨機(jī)調(diào)查,并對(duì)調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì),共分為優(yōu)秀和一般兩類,先從結(jié)果中隨機(jī)抽取100份,統(tǒng)計(jì)得出如下
列聯(lián)表:
優(yōu)秀 | 一般 | 總計(jì) | |
男 | 25 | 25 | 50 |
女 | 30 | 20 | 50 |
總計(jì) | 55 | 45 | 100 |
(1)根據(jù)上述列聯(lián)表,是否有
的把握認(rèn)為“創(chuàng)城知識(shí)的知曉程度是否為優(yōu)秀與性別有關(guān)”?
(2)現(xiàn)從調(diào)查結(jié)果為一般的市民中,按分層抽樣的方法從中抽取9人,然后再?gòu)倪@9人中隨機(jī)抽取3人,求這三位市民中男女都有的概率;
(3)以樣本估計(jì)總體,視樣本頻率為概率,從全市市民中隨機(jī)抽取10人,用
表示這10人中優(yōu)秀的人數(shù),求隨機(jī)變量
的期望和方差.
附:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,
是等邊三角形,點(diǎn)
是
上的一點(diǎn),平面
平面
,
,
,
,
,
.
![]()
(Ⅰ)若點(diǎn)
是
的中點(diǎn),求證:平面
平面
;
(Ⅱ)若
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是( )
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
![]()
![]()
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的![]()
C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某區(qū)2018年房地產(chǎn)價(jià)格因“棚戶區(qū)改造”實(shí)行貨幣化補(bǔ)償,使房?jī)r(jià)快速走高,為抑制房?jī)r(jià)過(guò)快上漲,政府從2019年2月開始采用實(shí)物補(bǔ)償方式(以房換房),3月份開始房?jī)r(jià)得到很好的抑制,房?jī)r(jià)漸漸回落,以下是2019年2月后該區(qū)新建住宅銷售均價(jià)的數(shù)據(jù):
月份 | 3 | 4 | 5 | 6 | 7 |
價(jià)格 | 83 | 82 | 80 | 78 | 77 |
(1)研究發(fā)現(xiàn),3月至7月的各月均價(jià)
(百元/平方米)與月份
之間具有較強(qiáng)的線性相關(guān)關(guān)系,求價(jià)格
(百元/平方米)關(guān)于月份
的線性回歸方程;
(2)用
表示用(1)中所求的線性回歸方程得到的與
對(duì)應(yīng)的銷售均價(jià)的估計(jì)值,3月份至7月份銷售均價(jià)估計(jì)值
與實(shí)際相應(yīng)月份銷售均價(jià)
差的絕對(duì)值記為
,即
,
.若
,則將銷售均價(jià)的數(shù)據(jù)稱為一個(gè)“好數(shù)據(jù)”,現(xiàn)從5個(gè)銷售均價(jià)數(shù)據(jù)中任取2個(gè),求抽取的2個(gè)數(shù)據(jù)均是“好數(shù)據(jù)”的概率.
參考公式:回歸方程系數(shù)公式
,
;參考數(shù)據(jù):
,
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com