設二次函數(shù)
,對任意實數(shù)
,有
恒成立;數(shù)列
滿足
.
(1)求函數(shù)
的解析式和值域;
(2)證明:當
時,數(shù)列
在該區(qū)間上是遞增數(shù)列;
(3)已知
,是否存在非零整數(shù)
,使得對任意
,都有![]()
恒成立,若存在,求之;若不存在,說明理由.
(1)
,值域為
;(2)證明見解析;(3)存在,且
.
解析試題分析:(1)這是一個不等式恒成立問題,把不等式轉化為
恒成立,那么這一定是二次不等式,恒成立的條件是
可解得
,從而得到
的解析式,其值域也易求得;(2)要證明數(shù)列
在該區(qū)間上是遞增數(shù)列,即證
,也即
,根據(jù)
的定義,可把
化為關于
的二次函數(shù),再利用
,可得結論
;(3)這是一道存在性問題,解決問題的方法一般是假設存在符合題意的結論,本題中假設
存在,使不等式成立,為了求出
,一般要把不等式左邊的和求出來,這就要求我們要研究清楚第一項是什么?這個和是什么數(shù)列的和?由
,從而
,![]()
![]()
,不妨設
,則
(
),對這個遞推公式我們可以兩邊取對數(shù)把問題轉化為
,這是數(shù)列
的遞推公式,可以變?yōu)橐粋等比數(shù)列,方法是上式可變?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/ec/b/9mi2a.png" style="vertical-align:middle;" />,即數(shù)列
是公比為2的等比數(shù)列,其通項公式易求,反過來,可求得
,從而求出不等式左邊的和,化簡不等式.
試題解析:(1)由
恒成立等價于
恒成立,
從而得:
,化簡得
,從而得
,所以
,
3分
其值域為
. 4分
(2)解:
6分
, 8分
從而得
,即
,所以數(shù)列
在區(qū)間
上是遞增數(shù)列. 10分
(3)由(2)知
,從而
;
,即
;
12分
令
,則有
且
;
從而有
,可得
,所以數(shù)列
是
為首項,公比為
的等比數(shù)列,
從而得
,即
,
所以
,
所以
,所以
,
所以,![]()
.
即![]()
![]()
,所以,
恒成立. 15分
當
為奇數(shù)時,即
恒成立,當且僅當
時,
有最小值
為.
16分
當![]()
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=ex-e-x(x∈R且e為自然對數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的奇偶性與單調性;
(2)是否存在實數(shù)t,使不等式f(x-t)+f(x2-t2)≥0對一切x都成立?若存在,求出t;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)
(
)
(Ⅰ)若函數(shù)
是定義在R上的偶函數(shù),求a的值;
(Ⅱ)若不等式
對任意
,
恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知冪函數(shù)
的圖象經過點
.
(Ⅰ)求函數(shù)
的解析式;
(Ⅱ)判斷函數(shù)
在區(qū)間
上的單調性,并用單調性的定義證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知增函數(shù)
是定義在(-1,1)上的奇函數(shù),其中
,a為正整數(shù),且滿足
.
⑴求函數(shù)
的解析式;
⑵求滿足
的
的范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)f(x)=|2x-1|+|2x-3|,x∈R
(Ⅰ)解不等式f(x)≤5;
(Ⅱ)若
的定義域為R,求實數(shù)m的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com