| A. | f(2)>e2f(0),f(2015)>e2015f(0) | B. | f(2)>e2f(0),f(2015)<e2015f(0) | ||
| C. | f(2)<e2f(0),f(2015)<e2015f(0) | D. | f(2)<e2f(0),g(2015)>e2015f(0) |
分析 求F(x)的導數(shù)F'(x)=$\frac{f'(x)-f(x)}{{e}^{x}}$,利用導數(shù)判斷函數(shù)F(x)的單調(diào)性,通過單調(diào)性得出F(0)>F(2),F(xiàn)(0)>F(2015).
解答 解:F'(x)=$\frac{f'(x)-f(x)}{{e}^{x}}$
∵f′(x)<f(x)
∴F'(x)=$\frac{f'(x)-f(x)}{{e}^{x}}$<0
∴F(x)在R上遞減
∴F(0)>F(2),F(xiàn)(0)>F(2015)
∴f(0)>$\frac{f(2)}{{e}^{2}}$,f(0)>$\frac{f(2015)}{{e}^{2}}$
∴f(2)<e2f(0),f(2015)<e2015f(0)
故選C
點評 考察了利用導函數(shù)判斷函數(shù)單調(diào)性,屬于常規(guī)題型,應熟練掌握.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{4}{9}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{9}$ | D. | $\frac{1}{9}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 671 | B. | 670 | C. | 1342 | D. | 1344 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com